
Journal of Biotech Research [ISSN: 1944-3285] 2017; 8:58-77 

 

58 

 

Fungal lipases: a review 
 
Akshita Mehta, Urgyn Bodh, Reena Gupta* 
 
Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla-171005, India 
 
 
Received: February 6, 2017; accepted: May 8, 2017. 

 
 
Lipases (triacylglycerol hydrolases, E.C. 3.1.1.3) occupy a prominent place among biocatalysts and carry out 
reactions in aqueous and non-aqueous media. They catalyze both the hydrolysis and synthesis of long chain 
acylglycerols. The chemo-, regio- and enantio- specific characteristics of lipase tend to be a focus research area 
for scientists and industrialists. Compared to plants and animals, microorganisms have been found to produce 
high amount of lipases. Fungal lipases stand out as the major sources of the enzyme because of their catalytic 
activity, low cost of production and relative ease in genetic manipulation. This review describes the various 
sources of lipases, their properties, purification methods, immobilization techniques, and potential industrial 
applications that make lipases to be biocatalysts of choice for the present and future. The aim of this review is to 
present recent information on fungal lipases. 
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Introduction 
 
Lipases have emerged as one of the leading 
biocatalysts with proven potential for 
contributing to the million-dollar underexploited 
lipid technology bio-industry and have been 
used in situ lipid metabolism and ex situ 
multifaceted industrial applications [1]. Lipases 
are triacylglycerol acylhydrolases (E.C. 3.1.1.3) 
that catalyze the hydrolysis of triacylglycerol to 
glycerol and fatty acids. They are ubiquitous in 
nature and are produced by several plants, 
animals and microorganisms [2]. Microbial 
lipases have gained special industrial attention 
due to their ability to remain active under 
extremes of temperature, pH and organic 
solvents, and chemo-, regio and 
enantioselectivity. In addition to the hydrolysis 
of triglycerides, lipases can catalyze a variety of 

chemical reactions which include esterification, 
trans-esterification, acidolysis and aminolysis. 
Lipase is frequently used to catalyze the 
hydrolysis of wide non-natural substrates in 
order to obtain enantio- and regio selective 
substrates [3]. The numerous industrial 
applications of lipases have stimulated interest 
in isolation of new lipases from novel sources 
and strong efforts have been concentrated on 
the engineering of enzymes with specific 
properties or better performance for industrial 
applications [4]. The reasons for the enormous 
biotechnological potential of microbial lipases 
are: their stability in organic solvents, they do 
not require cofactors, possess broad substrate 
specificity and exhibit a high enantio-selectivity 
[5]. The high versatility of lipases allows their 
application in different industries like food, dairy 
[6], detergent [7], pharmaceutical [8, 9], 
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biodiesel production [10-12] leather, textile, 
cosmetic, paper and oleo-chemicals [13]. 
 
Among the microorganisms, fungi are 
recognized as one of the best lipase sources [14]. 
Fungal lipases today have gained significant 
attention in the industries due to their substrate 
specificity and stability under varied chemical 
and physical conditions. Fungal enzymes are 
extracellular in nature and they can be extracted 
easily, which significantly reduces the cost and 
makes this source preferable over bacteria. Soil 
contaminated with spillage from the products of 
oil and dairy harbors fungal species which have 
the potential to secrete lipases to degrade fats 
and oils [7]. The role of fungi in bioremediation 
process has been well documented [15]. There 
has been an increasing awareness of potentially 
harmful effects of the worldwide spillage of the 
oil and fatty substances in both saline and fresh 
waters. Domesticated waste is also considered 
as a pollutant as it has a high amount of fatty and 
oil substances and bioconversion by fungal 
activity results in the production of a vast 
number of useful substances. Filamentous fungi 
and yeasts usually behave more efficiently in 
solid-state fermentation and show greater 
productivities when compared to submerged 
fermentation [16]. Bearing this in mind, the 
present review is focused on fungal lipase 
production, properties and their wide range of 
industrial applications. 
 
Historical Background 
Lipase was first discovered in pancreatic juice in 
the year 1856 by Claude Bernard. Lipases were 
first demonstrated in plants seeds. Animal 
pancreatic extracts were traditionally used as 
the source of lipase for commercial applications. 
Lipase producers are widespread in the nature. 
However, microbial sources of lipase were 
explored when the industrial potential of lipases 
enhanced and when the demand for lipases 
could not be met by the supply from animal 
sources. The first work on fungal lipases was 
reported by [17]. In 1994, Novo Nordisk 
introduced the first commercial recombinant 
lipase ‘Lipolase’ which originated from the 

fungus Thermomyces lanuginosus and was 
expressed in Aspergillus oryzae. Fungi capable of 
synthesizing lipases are found in several 
habitats, including soils contaminated with 
wastes of vegetable oils, dairy byproduct, seeds 
and deteriorated food [18, 19]. 
 
Classification of lipases 
A new classification was more recently reported 
in the Lipase Engineering Database (LED) 
(http://www.led.uni-stuttgart.de), which today 
includes not only bacterial, but also yeast, fungal 
and mammalian lipases. This classification 
distributes the lipases into three classes on the 
basis of the oxyanion hole: GX, GGGX, and Y [20]. 
Based on this classification and of the amino-acid 
sequence similarities, yeasts and fungal lipases 
have been grouped into five different subclasses, 
two in the GX class, two in the GGGX class and 
one in the Y class (Figure 1) [21]. 
 
Sources 
Lipases are ubiquitous enzymes and have been 
found mostly from the microbial [12, 14, 22-25], 
plant [26, 27] and animal kingdom [28]. Micro-
organisms have the advantages including the 
ability to catalyze diverse reactions, produce 
high yields, broad substrate specificity, 
enhanced stability and reduced production costs 
[29, 30]. In addition, they have the advantage of 
relative ease of genetic manipulation. The 
interest in microbial lipase production has 
increased in the last decade, because of its large 
potential in manufacturing applications as food 
additives (flavor modification), fine chemicals 
(synthesis of esters), waste water treatment 
(decomposition and removal of oil substances), 
cosmetics (removal of lipids), pharma (digestion 
of oils and fats in foods), leather (removal of 
lipids from animal skins) and medicine (blood 
triglyceride assay) [9, 31-33]. Fungi have been 
considered as best lipase sources [34, 35] 
because of extracellular lipase production [16, 
36]. Fungal lipases have benefits over bacterial 
ones due to the fact that present day technology 
favors the use of batch fermentation and low 
cost extraction methods. Major genera of 
filamentous  fungi  include Rhizopus, Aspergillus, 
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Figure 1.  Classification of lipases based on lipase engineering database [21]. 
 
 
 

 
 

Figure 2. Crystal structure of the Thermomyces lanuginosus lipase. The β-sheet is shown in blue, surrounded by some helices in yellow, and the 
active serine site residue in red sticks, and the lid shown in red. Both the open and the closed conformation are shown superimposed [75]. 
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Figure 3. Steps of the lipase catalytic mechanism. An acyl-enzyme intermediate is formed by a serine nucleophilic attack on the carbonyl carbon, 
promoted by a histidine and an aspartate residue – these three amino acids form the catalytic triad – reaction a. This intermediate reacts with a 
nucleophile in a second nucleophilic attack, such as water, creating the product and returning the functional hydroxyl group to serine – reaction 
b [76]. 

 
 
Penicillium, Mucor, Ashbya, Geotrichum, 
Beauveria, Humicola, Rhizomucor, Fusarium, 
Acremonium, Alternaria, Eurotrium and 
Ophiostoma [37]. A list of various fungal lipase 
producers is presented in Table 1. Species of the 
mold Aspergillus are well known lipase 
producers. Lipases from Aspergillus niger are 
produced both intracellularly and extracellularly 
[54, 55]. Lipase from Penicillium sp. was 
optimized by using response surface 
methodology [56]. Fungal species which produce 
lipases are Candida rugosa, Candida antarctica, 
T. lanuginosus, Rhizomucor miehei, 
Pseudomonas, Mucor and Geotrichum [18, 57, 
58]. Lipase-producing 59 fungal strains were 
isolated from Brazilian savanna soil by using 
enrichment culture techniques and among these 
Colletotrichum gloesporioides identified as most 
productive strain produced 27,700 U/L of lipase 
[59]. In another study, lipase from Aspergillus sp. 
having activity of 17 U/ml was reported [60]. 
 
Structure of lipase 
The 3-D structures of lipases from Rhizomucor 
miehei [61, 62], Geotrichum candidum [63], 
Candida rugosa [64], Rhizopus delemar [65], 
Pseudomonas glumae [66], Penicillium 
camembertii [67], Humicola lanuginosa [68], and 
human pancreas [69] have been 
crystallographically resolved. These studies 
provide detailed insight into the structure-
function relationships in lipases. The crystal 

structures indicated that all these lipases have a 
common α/β- hydrolase fold [70, 71]. It also 
showed a catalytic triad (Ser-His-Asp/Glu) similar 
to that found in serine proteases [72], and a lid 
covering the active site. During activation, the lid 
covering the active site gets displaced; this opens 
up the binding pocket, and the active site 
becomes accessible to the substrate. Lipases 
display a wide variety in primary sequences with 
a range of molecular masses from less than 20 
kDa to about 60 kDa for larger fungal lipases, as 
in the case of Geocthricum candidum lipase. 
However, all lipases exhibit the same α/β-
hydrolase fold structure [73], common also in 
many other hydrolases [74] and identical 
catalytic triad composed of Ser, His, Asp, and 
sometimes Glu in place of Asp (Figure 2) [75]. 
 
Catalytic mechanism of lipases 
The mechanism of the lipase to catalyze ester 
hydrolysis is similar to carboxyl esterases and 
serine proteases, and involves a first nucleophilic 
attack of the serine on the carbonyl carbon of 
the ester bond, yielding a covalent acyl-enzyme 
intermediate and releasing an alcohol, i.e. a 
diacylglycerol would be released after forming a 
hydroxyl group in a triacylglycerol molecule [76] 
(Figure 3). This step is stabilized by the other two 
residues of the active site, histidine and aspartic 
acid. Then, a second nucleophilic attack occurs 
when the acyl-enzyme intermediate is 
hydrolyzed by water, finally forming a carboxylic 
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Table 1. Various fungal strains for lipase production through fermentation. 
 

Microorganism Time 
(h) 

Lipase 
activity 
(U/ml) 

Type of 
fermentation 

Raw material Reference 

Penicillium aurantiogriseum 48 25 SmF Soya bean oil [38]  

Rhizopus rhizopodiformis 24 43 SSF Olive oil cake-Bagasse [39]  

Rhizopus pusillus 25 10.8 SSF Olive oil cake-Bagasse [39]  

Penicillium restrictum 24 30 SSF Babassu oil cake [40] 

Penicillium simplicissimum 36 30 SSF Babassu oil cake [41]  

Rhizopus oligosporus TUV-31 48 76.6 SSF Egg yolk [42]  

Rhizopus oligosporus 
ISUUV-16 

48 81.2 SSF Almond meal [43]  

Aspergillus carneu 96 12.7 SSF Sunflower oil [44]  

Candida cylindracea 179.5 23.7 SmF Oleic acid [45]  

Candida rugosa 50 3.8 SmF Olive oil [46]  

Penicillium verrucosum 48 40 SSF Soybean bran [47]  

Geotrichum sp. 24 20 SmF Olive oil [32]  

Rhizopus homothallicus 12 826 SSF Olive oil [48] 

Penicillium chrysogenum 168 46 SSF Wheat bran [49]  

Fusarium solani FS1 120 0.45 SmF Sesame oil [50]  

Penicillium simplicissimum 48 21 SSF Soy cake [51]  

Aspergillus awamori 96 495 SmF Rice bran oil [52]  

Candida cylindracea NRRLY-
17506 

175 20.4 SmF Olive mill wastewater [53]  

 
 
acid. Many different compounds can act as acyl 
donors and likewise, in addition to water, many 
nucleophilic compounds can perform the same 
role and break the acyl-enzyme intermediate 
[77, 78]. Due to this broad substrate specificity, 
lipases can perform several reactions such as 
trans-esterification, esterification, interesterifi-
cation, and acidolysis beyond their natural 
acylglycerol hydrolysis. 
 
However, the catalytic options of lipases spread 
to several other synthetic or non-conventional 
substrates and types of reactions, from using 
amines as nucleophilic compounds to 
performing aldol additions [73, 79, 80]. 
 
 

Properties of lipases 
 

The number of available lipases has increased 
since the 1980s and used as industrial 
biocatalysts because of their properties like bio-
degradability [81], high specificity [82], high 

catalytic efficiency [83], temperature [54], pH 
dependency, activity in organic solvents [84], 
and nontoxic nature. The most desired 
characteristics of the lipase are its ability to 
utilize all mono-, di-, and tri-glycerides as well as 
the free fatty acids in transesterification, low 
product inhibition, high activity/yield in non-
aqueous media, low reaction time, resistance to 
altered temperature, pH, alcohol and reusability 
of immobilized enzyme. Additionally, lipases can 
carry out reactions under mild conditions of pH 
and temperature and this reduces energy 
required to direct reactions at unusual 
temperatures and pressures. 
 
pH and temperature kinetics 
Lipases are active over broad pH and 
temperature range [85]. They possess stability 
over a wide range from pH 4.0 to 11.0 and 
temperature optima in the range from 10 to 
96°C. The extracellular lipase produced by 
Aspergillus niger and Rhizopus arrhizus are 
particularly active at low pH [86, 87]. Lipases 
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from Aspergillus niger [88] and Rhizopus 
japonicas [89] are stable at 50°C, and lipase of 
thermotolerant Humicola lanuginosa is stable at 
60°C. 
 
Substrates 
Lipases catalyze various reactions since they 
have ability to act on wide range of substrates 
that may be artificial or natural [90]. Fungal 
lipases are extracellular and their production is 
influenced by nutritional and physicochemical 
factors such as temperature, pH, nitrogen, and 
carbon sources, and presence of lipids, inorganic 
salts, agitation rate, and dissolved oxygen 
concentration. Production of lipase can be 
significantly influenced by carbon sources such 
as sugars, sugar alcohol, polysaccharides, whey, 
amino acids and other complex sources [91-94]. 
Oleic acid (cis-9-Octadecenoic acid) has been 
reported as the most suitable inducer for the 
production of the main extracellular Lip2p lipase 
in Yarrowia lipolytica [95, 96]. The major factor 
for the expression of lipase activity has always 
been carbon source, since lipases are inducible 
enzymes. Palm oil mill effluent has been used for 
lipase production by Candida cylindracea with an 
activity of 20.26 U/ml under the optimized 
conditions [97]. Various mineral and organic 
nitrogen sources were tested for their capacity 
to support cell growth and lipase production 
[95]. Corn steep liquor, yeast extract, and 
peptone have been reported as best nitrogen 
sources for lipase production from Penicillium 
verrucosumin [47]. In order to improve the 
productivity of lipase from Rhizopus chinesis, the 
effect of oils and oil-related substrates were 
assessed by orthogonal test and Response 
Surface Methodology (RSM) [98]. The optimized 
medium for improved lipase activity consisted of 
peptone, olive oil, maltose, K2HPO4, and 
MgSO4.7H2O [98]. The Plackett–Burman 
statistical experimental design was used to 
evaluate the fermentation medium components 
[46]. The effect of 12 medium components was 
studied in 16 experimental trials. Glucose, olive 
oil, and peptone were found to have more 
significant influence on lipase production by 
Candida rugosa. RSM approach was used to 

investigate the production of an extracellular 
lipase from Aspergillus carneus. Interactions 
were evaluated for five different variables 
(sunflower oil, glucose, peptone, agitation rate, 
and incubation period) and 1.8-fold increase in 
production was reported under optimized 
conditions [44]. Lipase production was observed 
in the range of 7.78 U/ml to 6,230 U/ml under 
various optimized conditions [32, 99, 100]. 
 
Purification 
Many fungal lipases have been extensively 
purified and characterized in terms of their 
activity and stability profiles at different pH, 
temperature, effects of metal ions, and chelating 
agents. Purification of enzymes allows 
determination of primary amino acid sequence 
and 3-D structure ([101-103], and X-ray studies 
of pure lipases enable the establishment of the 
structure–function relationships and contribute 
for a better understanding of the kinetic 
mechanisms of lipase action on hydrolysis, 
synthesis and group exchange of esters [17]. The 
purification of lipase from different 
microorganisms has been reported through 
several techniques such as precipitation ([102, 
104], hydrophobic interaction chromatography 
[105], gel filtration [106], ion exchange 
chromatography [107], and affinity 
chromatography [108, 109]. Purification of lipase 
is needed in industries employing the enzymes 
for the biocatalytic production of fine chemicals 
[110], pharmaceuticals [111], and cosmetics 
[112]. During the early stages of a purification 
method, precipitation was used as a crude 
separation step and was found to give a high 
average yield [102].  
 
A lipase from Penicillium cyclopium MI was 
purified by using ammonium sulfate 
precipitation, DEAE Cellulose, DEAE-Sepharose, 
hydroxyapatite chromatography, and gel 
filtration on Cellulofine GC-700. The purification 
of the preparation was 1,380-fold and recovery 
yield 27%. The molecular weight of the enzyme 
was estimated to be 35,000 g/mol from 
Sephadex G-100 chromatography [40]. The 
lipase obtained from Trichoderma viride was 
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purified 134-folds with 46% yield by ion 
exchange and gel permeation chromatography 
[113]. A novel thermostable lipase from 
Aspergillus niger was purified from a crude 
preparation by a procedure including 
precipitation followed by a series of 
chromatographic steps. The overall purification 
was 50-fold with a yield of 10% [114]. The lipase 
from Rhizopus japonicus NR400 was purified to 
homogeneity by chromatography on 
hydroxyapatite, octylsepharose, and Sephacryl 
S-200 [17]. Microbial lipases showed different 
molecular weights ranging between 25-68 kDa 
[115-122]. The highest molecular weight of 
lipase i.e. 70 kDa has been reported from 
thermophilic fungus Neosartorya fischeri P1 
[123]. 
 
Immobilization of Lipases 
Immobilization improves recyclability of 
expensive lipases and also enhances enzyme 
stability and activity. Immobilization is favored 
as it can easily control the enzymatic process, 
purity of the products, and for its reusability 
feature [124, 125]. Using immobilized lipases has 
multi-fold advantages such as increase in 
thermal and ionic stability which also increases 
its efficiency. It is also easier to control reaction 
parameters like flow rate and accessibility of 
substrates when the enzyme is immobilized 
[126, 127]. The major contribution to achieve a 
good performance of immobilized catalyst is 
primarily provided by the strategy employed for 
immobilization [128] and by the characteristics 
of the support. The desirable characteristics of 
solid supports used for immobilization include 
large surface area, low cost, reusability, good 
chemical, mechanical and thermal stability, and 
insolubility [129]. 
 
Different techniques for immobilization of 
lipases, such as physical adsorption, covalent 
bonding, entrapment and microencapsulation 
using various supports have been used [130- 
139]. 
 
Best support for immobilization of lipase from A. 
niger was found to be Amberlite MB-1, which 

gave an immobilization yield of approximately 
62% [140]. The immobilization of purified lipases 
obtained from a commercial A. niger, via ionic 
adsorption on DEAE-Sepharose was reported by 
[141]. The immobilization of Aspergillus sp. 
lipase in silk fibers via glutaraldehyde cross-
linking, and its use in hydrolysis of sunflower oil 
has been reported [142]. Candida rugosa lipase 
immobilized on oxidized multi-walled carbon 
nanotubes (MWCNTs) resulted in enhancement 
in catalytic activity of the enzyme [143]. 
Extracellular lipase from Yarrowia lipolytica 
IMUFRJ 50682, when immobilized on nano-sized 
magnetic particles, pH and thermostability of the 
enzyme increased [144]. 
 
 Lipase from Candida antarctica (CALB) 
immobilized in gigaporous PGMA microspheres 
showed the highest activity yield, reusability, 
stability, as well as the best affinity for the 
substrate [3]. Hydrophobic controlled pore 
glasses were employed to immobilize 
Rhizomucor miehei lipase [145]. In a recent 
study, lipase from Trametes hirsute was 
immobilized on chitosan/clay beads, with an 
immobilization yield of 80.9%. The analysis of 
free enzyme and the immobilized derivative at 
different temperatures, pH, in the presence of 
various solvents, metallic ions, and storage 
showed that the immobilization process 
increased the enzyme life span [146]. A method 
has been reported for covalent attachment of 
Candida rugosa lipase to two types of chitosan 
beads by activating the hydroxyl groups using 
carbodiimide as the coupling agent. 
Immobilization enhanced the enzyme stability 
against changes in pH and temperature, and 
increased enzyme activity up to 110%. Lipase 
from Candida rugosa was found to be more 
stable when entrapped in alginate gel than 
covalently bound on Eupergit C or encapsulated 
in a sol-gel matrix [147]. Yarrowia lipolytica 
lipase was immobilized on octyl-agarose and 
octadecyl-sepabeads supports by physical 
adsorption that resulted in higher yields and 
greater (10-fold) stability than that of free lipase. 
This was accounted by the hydrophobicity of 
octadecyl - sepabeads   that   enhanced   affinity 
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Table 2. Lipase applications in the food industry [18]. 
 

Food industry Action Product of application 

Dairy foods Hydrolysis of milk fat, cheese 
ripening, modification of butter fat 

Development of flavoring agents in milk, cheese and 
butter 

Bakery foods Flavor improvement Shelf-life extension, volume improvement 

Beverages Improved aroma Alcoholic beverages, e.g. sake, wine 

Food dressings Quality improvement Mayonnaise, dressings and whippings 

Health foods Transesterification Health foods 

Meat and fish Flavor development Meat and fish product, fat removal 

Fats and oils Transesterification, hydrolysis Cocoa butter, margarine, fatty acids, glycerol, mono 
and diglycerides 

 
 
between the enzyme and support [148]. Lipases 
entrapped in k-carrageenan have been reported 
to be highly thermostable and organic solvent 
tolerant [149, 150]. 
 
 

Applications 
 

Fungal lipases are widely diversified in their 
enzymatic properties and substrate specificity, 
which makes them very attractive for industrial 
applications. They constitute an important group 
of biotechnologically important enzymes 
because of the versatility of their properties and 
ease of mass production. The industrial 
applications of fungal lipases have been 
reviewed by many researchers [1, 2, 151-153]. 
Development of lipase-based technologies for 
the synthesis of novel compounds is rapidly 
expanding the uses of these enzymes [154]. 
 
Lipases in food processing industry 
Fats and oils are important constituents of foods 
and their modification is one of the prime areas 
in food processing industry that demands novel 
economic and green technologies [155]. Most of 
the commercial lipases produced are utilized for 
flavor development in dairy products and 
processing of other foods, such as meat, 
vegetables, fruit, baked foods, milk products, 
and beer [156, 157]. Lipases from A. niger, 
Rhizopus oryzae, Candida cylindracea have been 
used in bakery products. Betapol was the first 
commercial product made by the 1,3-specific 
lipase treatment of tripalmitin with unsaturated 

fatty acids that resulted in 1,3-diunsaturated-2- 
saturated triglycerides intended for infant 
formula [158, 159]. Immobilized lipases from 
Candida antarctica (CAL-B), Candida cylindracea 
AY30, and Geotrichum candidum were used for 
the esterification of functionalized phenols for 
synthesis of lipophilic antioxidants in sunflower 
oil [160]. A whole range of microbial lipase 
preparations such as Mucor meihei (Piccnate, 
Gist-Brocades; Palatase M, Novo Nordisk), A. 
niger and A. oryzae (Palatase A, Novo Nordisk; 
Lipase AP, Amano; Flavour AGE, Chr. Hansen) 
have been developed for the cheese 
manufacturing industry (http://www.au-
kbc.org/frameresearch.html). Lipase 
synthesized from Penicillium roquefortii is largely 
responsible for the development of the 
characteristic flavor of blue cheese [161, 162]. In 
recent years, consumers have been increasingly 
confronted with functional foods and 
nutraceuticals, which are claimed to promote 
health and wellbeing beyond their nutritive 
properties ([163, 164].  Large scale applications 
of lipases in industry can be found not only in the 
dairy and baking industry but also for the 
production of trans-fatty acid free margarines 
[74, 165, 166]. Lipase applications in various 
food industries are given in Table 2 [18]. 
 
Lipase as biosensor 
In clinical diagnosis and in food industry, the 
quantitative determination of triacylglycerol is of 
great importance. The lipid sensing device as a 
biosensor is rather cheaper and less time 
consuming as compared to the chemical 
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methods for the determination of 
tryacylglycerols. The basic concept of using 
lipase as biosensors is to generate glycerol from 
the triacylglycerol in the analytical sample and to 
quantify the released glycerol by an enzymatic 
method [151]. Lipases immobilized on 
pH/oxygen electrodes along with glucose 
oxidase serve as lipid biosensors and can be used 
for the determination of triglycerides and blood 
cholesterol [167]. Lipase biosensor is also used 
for the determination of lipids for the clinical 
diagnosis [168]. Lipase from Candida rugosa has 
been developed as a DNA probe [110]. The 
enzyme lipase immobilized in a Nafion 
membrane on a graphite-epoxy transducer can 
be used to quantify triglycerides in food samples 
[169]. Candida rugosa lipase was immobilized on 
aluminosilicate and used for the detection of an 
organo phosphate insecticide (Diazinon) in an 
aqueous medium [170]. In another study, a 
Candida rugosa lipase immobilized on a 
mesoporous Si matrix was used for the detection 
of triglycerides [171]. Lipase was also used as a 
amperometric sensor [172]. Candida rugosa 
lipase, acts as a catalyst in the hydrolysis of 
triacylglycerol to glycerol and fatty acids, is used 
as biosensors for detection of β-hydroxyacid 
esters and triglycerides in blood serum [173]. 
 
Lipases in ester synthesis 
Lipases have been used for the synthesis of 
esters. The esters produced from short chain 
fatty acids have applications as flavoring agents 
in food industry [174]. Various esterification 
reactions catalyzed by lipases are shown in Table 
3. Lipase from Bacillus aerius immobilized on 
celite 545 was used for the synthesis of ethyl 
ferulate, a compound used for anticancer 
properties [185]. As reported earlier, 
esterification of sulcatol and fatty acids in 
toluene was catalyzed by Candida rugosa lipase 
[186]. The esterification reaction of lauryl 
alcohol and palmitic acid with C. Antarctica 
lipase (Novozym 435) as the catalyst has been 
reported to give a yield of more than 90% of 
lauryl palmitate under optimized conditions 
[187]. Lipase immobilized on silica and 
microemulsion- based organogels has been used 

for ester synthesis [188]. In a recent study, lipase 
from Aspergillus ibericus has been used for the 
esterification reactions and aroma ester 
production [189]. A variety of fatty acid esters 
are now produced commercially by using 
immobilized lipase in nonaqueous solvents [190-
193]. 
 
Lipases in bioremediation 
Bioremediation for waste disposal is a new 
avenue in lipase biotechnology. Lipases have 
been extensively used in waste water treatment 
[194]. Fungal species can be used to degrade oil 
spills in the coastal environment, which may 
enhance ecorestoration as well as help in the 
enzymatic oil processing in industries [195]. 
Species belonging to the genera Trichoderma, 
Fusarium, Penicillium, Aspergillus, Cladosporium, 
Mortierella, Beauveria, and Engyodontium are 
some examples of the fungi that have recently 
been described as tolerant to a variety of 
pollutants and indicated as potential 
bioremediation agents in soil [196]. Lipase from 
Aspergillus niger and Aspergillus terreus were 
used for the degradation of polyvinyl alcohol 
films and bioremediation of polluted soils 
respectively [197, 198]. Lipase from Aspergillus 
ibericus and Aspergillus uvarum were also used 
in bioremediation processes [199]. Lipolytic 
enzyme obtained from Aspergillus niger isolated 
from oil polluted soil has been examined and 
found to degrade polyaromatic hydrocarbons 
found in petroleum contaminated soil [81]. 
 
Lipases in textile industry 
The use of fungal lipase in textile industry is 
becoming increasingly important. Lipases are 
used to assist in the removal of size lubricants in 
order to provide the fabric better absorbency for 
enhanced levelness in dyeing. Commercial 
preparations used for the desizing of denim and 
other cotton fabrics contain lipase enzymes 
[151]. Lipases together with alpha amylase are 
being used for the desizing of the denim and 
other cotton fabrics at the commercial scale 
[200]. Aspergillus oryzae lipase was capable of 
modifying PET (Polyethylene terephthalate) 
fabrics,  improving their hydrophilicity and anti- 
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Table 3. Esterification catalyzed by lipases. 
 

Lipase Acid Alcohol Solvent Reference 

Rhizopus delemar 
Penicillium roqueforti 
Humicola lanuginosa 

C4 C2, C4, Isoamyl  Hexane [175] 

Mucor miehei C12, Oleic  C3-C12 - [176] 

Geotrichum candidum 
Aspergillus niger 
Rhizopus delemar 
Penicillium cyclopium 

Oleic Terpene alcohol, primary 
alcohols (C1-C12), 2- and 3- 
substituted alcohols, benzyl 
alcohol, cyclohexanol 

Buffer+Casein [177] 

Aspergillus niger 
Rhizopus delemar 
Penicillium cyclopium 
Geotrichum candidum 

C2-C18, benzoic, oleic, 
ricinoleic, sebacic, 
succinic etc.  

Glycerol Water [178] 

Aspergillus niger 
Rhizopus delemar 
Penicillium cyclopium 

C3-C6, Isobutyric  Geraniol, farnesol, phytol, β-
citronellol 

- [179] 

Mucor miehei C4 C4 Hexane [180] 

Candida rugosa  Oleic Sucrose, sorbitol, glucose, 
fructose 

Buffer (pH 5.4) [181] 

Candida rugosa  Oleic, isostearic, 12- 
hydroxystearic, stearic  

Cholesterol Cyclohexane [182] 

Candida antartica Melted coconut acids  Ethyl D-glucopyranoside - [183] 

Mucor miehei  Oleic, linoleic, α-
linoleic, γ-linoleic. 
Docosahexanoic 

C2 Pentane  [184] 

 
 
static ability [201]. Immobilization of lipase from 
porcine-pancreas onto zirconia coated 
alkylamine glass beads by glutaraldehyde 
coupling was carried out for better washing of 
cotton cloth [202]. 
 
Lipases in detergent industry 
Fungal lipases find a major use as additives in 
detergents for industrial laundry and household 
detergents [203], and this can reduce the 
environmental load of detergent products, as it 
saves energy by enabling a lower wash 
temperature to be used [204]. An estimated 
1,000 tons of lipases are added to the 
approximately 13 billion tons of detergents 
produced each year. In 1994, Novo Nordisk 
introduced the first commercial lipase, 
Lipolase™, which originated from the fungus 
Thermomyces lanuginosus and was expressed in 
Aspergillus oryzae. Lipase from Thermomyces sp. 
is the most important detergent lipase which is 

very commonly used (Lipolase, Novozymes) 
[205]. A novel thermoactive and alkaline lipase 
from Talaromyces thermophilus fungus showed 
great resistance to alkaline pH, interfacial 
denaturation, and a high tolerance to various 
surfactants, oxidizing, and commercial wash 
agents. This enzyme could therefore be 
considered as a satisfactory and promising 
candidate for further industrial application 
principally cleaning process [206]. Lipase of 
Humicola lanuginosa is suitable as a detergent 
additive because of its thermostability, high 
activity at alkaline pH, and stability towards 
anionic surfactants. Lipases used as detergents 
also include those from Candida [207]. 
Laundering is generally carried out in alkaline 
media, lipases active under such conditions are 
preferred [208-210], for example, the A. oryzae 
derived lipase. The other applications of 
detergents are in dish washing, in a bleaching 
composition [211], decomposition of lipid 
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contaminants in dry cleaning solvents [212], 
liquid leather cleaner [213], contact lens 
cleaning [214], washing, degreasing,  and water 
reconditioning by using lipases along with 
oxidoreductases, which allows for smaller 
amounts of surfactants and operation at low 
temperatures  [215]. The lipase component 
causes an increase in detergency and prevents 
scaling. Recently, lipase from Rhizopus nigricans 
showed maximum lipolytic activity as well as 
bioemulsification activity indicating highest 
biosurfactant production also [216]. 
 
Lipases in medical applications 
Lipases are evolving rapidly and currently they 
are reported to show high potential in medicine. 
Intensive study and investigations have led 
researchers to explore lipases for their use in 
substitution therapy, where in enzyme 
deficiency during diseased conditions is 
compensated by their external administration 
[9]. Lipases may be used as digestive aids [174, 
208] and as the activators of Tumor Necrosis 
Factor, and therefore, can be used in the 
treatment of malignant tumors [217]. Although 
human gastric lipase (HGL) is the most stable 
acid lipase and constitutes a good candidate tool 
for enzyme substitution therapy [218]. Lipases 
have earlier been used as therapeutics in the 
treatment of gastrointestinal disturbances, 
dyspepsias, cutaneous manifestations of 
digestive allergies, etc. [219]. Lipase from 
Candida rugosa immobilized on a nylon support 
has been used to synthesize lovastatin, a drug 
which lowers serum cholesterol levels [220]. 
 
Lipases in Paper Industry 
Lipolytic enzymes are used to remove pitch, the 
lipid fraction of wood that interferes with the 
elaboration of paper pulp. They also help in the 
removal of lipid stains during paper recycling and 
to avoid the formation of sticky materials [151, 
221]. Nippon Paper Industries in Japan 
developed a pitch control method that used a 
fungal lipase from Candida rugosa to hydrolyse 
up to 90% of the triglycerides [18]. Hata and 
coworkers at Jujo Paper Company reported in 
1990 that lipases could reduce pitch problems by 

lowering the triglyceride content of groundwood 
pulp. A lipase obtained from Candida cylindrica, 
when added to the groundwood stock chest, 
reduced pitch problems and talc consumption 
considerably. Candia antartica lipase A (CALA) 
was used in pitch control in the paper industry 
[222]. 
 
Lipases in cosmetics and personal care products 
The cosmetic sector lipases have been used for 
personal care such as cleaning, softening, aroma, 
and coloring. It has large market value after food 
and pharma sector and accounts for 200 billion 
Euro [223]. Lipases have potential application in 
cosmetics and perfumeries because they show 
activities in surfactants and in aroma production 
[112]. Transesterification of 3,7-dimethyl-4,7-
octadien-1-ol with lipases from various microbial 
sources has been done to prepare rose oxide, 
which is an important fragrance ingredient in the 
perfume industry [224]. Nippon Oil and Fats also 
obtained a patent for the preparation of 
propyleneglycerol monofatty acid ester in the 
presence of lipase. This ester has been used as 
emulsifier and a pearling agent in cosmetics and 
foods [225]. Lipases are used in hair waving 
preparation [226] and have also been used as 
ingredients of topical antiobese creams [227] or 
in oral administration [228]. Water-soluble 
retinol derivatives were prepared by catalytic 
reaction of immobilized lipase [229]. Non-
specific lipase derived from Candida antartica, 
marketed as Novozym 435, was determined to 
be the most suitable for the enzymatic synthesis 
of isopropyl myristate [230]. Immobilized 
Rhizomucor meihei lipase was used as a 
biocatalyst in personal care products such as skin 
and sun-tan creams, bath oils etc. Candida 
antarctica lipase B synthesized amphiphilic 
compounds receive great attention from 
cosmetic industry due to a range of beneficial 
properties for skin [231].   
 
Lipases in biodiesel production 
Biodiesel is a group of esters produced by 
transesterification reaction between fatty acids 
and an alcohol in presence of catalyst. The 
biodiesel production from waste and non-edible 
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vegetable oil greatly reduces the cost of 
biodiesel production, and thus avoids the 
conflict between food and energy security, and 
is considered an important step in reducing 
pollution and recycling waste oil [10, 232]. 
 
The production of biodiesel has risen sharply in 
the last decade from approximately 950 liters in 
2000 to nearly 17,000 million liters in 2010 with 
the European Union as the world’s major 
producer, accounting for 53% of global biodiesel 
production [233]. In 2000, Biodiesel represented 
around 5% of the world’s biofuel production and 
in 2011 biodiesel share accounted for around 
20% of total biofuel production [233]. This 
increase seems to continue and biodiesel 
production is estimated to reach 41,000 million 
liters in 2022, as reported by the United Nations. 
Higher thermostability and short-chain alcohol-
tolerant capabilities of lipase make it very 
convenient for use in biodiesel production [234, 
235]. The majority of yeast and fungal lipases 
involved in biodiesel production are A. niger, C. 
antartica, C. rugosa, R. miehei, R. oryzae, and 
Thermomyces lanuginose [236].  
 
Production of biodiesel has been reported by 
using immobilized Candida antarctica lipase-
catalyzed methanolysis of soybean oil [237]. 
Immobilized lipase from Candida rugosa on 
Sepabeads EC-OD was most promising as a 
biocatalyst for the application of enzyme-
catalyzed biodiesel synthesis [238]. In a recent 
study, biodiesel production from Chinese tallow 
kernel oil has been catalyzed by Candida rugosa 
lipase (CRL) in ionic liquid [239]. 
 
Lipases in leather industry 
In recent years, lipases have found application in 
the soaking, dehairing, bating, and degreasing 
operation in leather making. Hides and skins 
contain proteins and fat in the collagen fibers. 
These substances must be partially or totally 
removed before the hides and skins are tanned. 
Lipases specifically degrade fat and do not 
damage the leather itself. Lipases represent the 
method of removing fat in the degreasing 
process with the lowest environmental impact 

[240]. For bovine hides, lipases allow tensile to 
be completely replaced. For sheepskins, the use 
of solvents is very common, but it can also be 
replaced by lipases and surfactants. 
 
 

Conclusion 
 

Fungi are capable of producing several enzymes 
for their survival within a wide range of 
substrates. Among these enzymes, lipases are 
predominantly used in several applications. 
Lipases owing to their properties such as activity 
over a wide temperature and pH range, 
substrate specificity, diverse substrate range and 
enantio-selectivity are the biocatalysts of choice 
for the present and future. The growing demand 
for lipases has shifted the trend towards 
prospecting for novel lipases, improving the 
properties of existing lipases for established 
technical applications and producing new 
enzymes for new areas of application. They are 
one of the most versatile enzymes available in 
nature. They are unique in various aspects 
starting from their ability to act at the interface, 
to molecular imprinting and retention of activity 
in organic solvents. These fat-splitting enzymes 
are attractive because of their applications in 
fields relevant to food, textile, biodiesel, 
medicine, paper, dairy, detergent and leather 
industry. The tremendous potential of lipases in 
various industries shows the need to develop 
novel cost-effective technologies for increased 
production, scaling up and purification of this 
versatile enzyme. 
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