RESEARCH ARTICLE

Clean energy of NiCo₂O₄/MoS₂ nanocomposites prepared by hydrothermal method

Jie Li*

Material and Chemical Engineering, Zibo Vocational Institute, Zibo, Shandong, China

Received: May 31, 2023; accepted: June 28, 2023.

Traditional semiconductor materials such as TiO₂ have a small response range to sunlight, which greatly limits the development and application of photocatalytic technology. In order to enhance the photocatalytic performance of clean energy, the nanocomposite clean energy NiCo₂O₄/MoS₂ prepared by hydrothermal method and its performance characterization were investigated. The different semiconductor nanomaterials were compounded with MoS₂, which were modified by the method of constructing heterojunctions to achieve the purpose of enhancing photocatalytic activity and improve the utilization of visible light. Its application properties in the direction of photocatalytic degradation and photolysis of hydrogen from water production were explored. Further, MoS₂ nanorods were synthesized by hydrothermal method, and NiCo₂O₄/CdS. The average hydrogen production rate of the obtained composite material reached 79.27 mmol/h/g in 3 h, and it showed much better photocatalytic stability than MoS₂. Through the close contact between NiCo₂O₄ and MoS₂, the photogenerated electrons produced by MoS₂ were effectively separated, which improved the life of photogenerated electrons, making the composite having the advantages of simple preparation method, low production cost, high catalytic activity, and good stability, which provided a new idea for hydrogen production from electrolyzed water.

Keywords: hydrothermal method; clean energy; nanocomposites; energy reduction; photocatalysis; hydrogen evolution reaction.

*Corresponding author: Jie Li, Material and Chemical Engineering, Zibo Vocational Institute, Zibo 255314, Shandong, China. Email: <u>ljie60501@163.com</u>.

Introduction

As global economic and industrial capabilities develop, the toxic and harmful gases emitted by human production, industries, and daily life continue to increase, which always threatens ecological environmental safety. There are many volatile, flammable, explosive, toxic, and harmful gases such as automobile exhaust, industrial waste gas, and formaldehyde, *etc*. which are always endangering human health, and the leakage of such explosive and toxic gases often occurs in the era of industrialization, which endangers human life. Therefore, continuously improving the level of chemical environmental gas detection, effectively controlling the emission of flammable and explosive gases, and innovating the ability to monitor toxic and harmful gases are important measures to solve ecological and environmental safety issues [1]. These toxic and harmful gases are not only endangering human health but also the culprits of acid rain which causes a big impact to the environmental safety [2]. Therefore, it is of great practical significance to study effective detection methods for such toxic and harmful gases. NiCo₂O₄/MoS₂ has the unique two-dimensional structure, high electrical conductivity, large

surface area, and good electrical mobility at room temperature, which determines that it will become a new generation of nanocomposites. Among them, the reduction of $NiCo_2O_4/MoS_2$ has been widely used by researchers in preparation of clean energy because its large surface area and rich functional groups can make up for the shortcomings of metal oxide semiconductors, the gas sensing materials. NiCo₂O₄/MoS₂ gas sensors, as new two-dimensional carbon nanomaterials, have high gas-sensitivity properties for toxic and harmful gases at room temperature, which can effectively solve the problem that the nanobased sensor can only work normally at a higher temperature during the gas-sensitive detection process. Currently, the designing and synthesizing nanocomposites with high sensitivity to toxic and harmful gases at room temperature and rapid response recovery rate are worthy of further exploration.

MoS₂ can be self-assembled into a threedimensional macroscopic columnar aerogel nanocomposite by changing the concentration of reaction raw materials and controlling the reaction temperature and time. The aerogel composite has a channel structure formed by laminating MoS₂ on top of each other, which effectively improves its specific surface area and electrical conductivity. The unique pore structure of the aerogel composite can quickly transmit diffusion molecules during the detection of toxic and harmful gases at room temperature, which makes it full use of the synergy between the two elements to effectively solve the problems of low sensitivity and long response recovery time of a $NiCo_2O_4/MoS_2$ sensor single at room temperature [3]. In recent years, researchers have intensively studied the detection of toxic and harmful gases by NiCo₂O₄/MoS₂ nanocomposites, especially after compounding non-metal oxide semiconductors with reduced oxide NiCo₂O₄/MoS₂, and their sensitive mechanisms have been explored and studied. A previous study demonstrated that the $NiCo_2O_4/MoS_2$ synthesized nanocomposites showed its sensitivity to 60 ppm MoS₂ of 80% at room temperature with a good gas sensitivity.

However, the NiCo₂O₄/MoS₂ nanocomposite exhibited poisoning of components and its recovery time was greater than 30 minutes. The gas sensitivity mechanism was also investigated. that NiCo₂O₄/MoS₂ results showed The nanocomposites had a large surface area, and NiCo₂O₄ nanoparticles were evenly distributed in the reduced-oxidized NiCo₂O₄/MoS₂ materials. The synergy between the two elements was used to improve the ability of gas molecules to transport and diffuse. Those results indicated that, although NiCo₂O₄/MoS₂ nanocomposite had a good sensitivity mechanism to toxic and harmful gases at room temperature, the lower sensitivity and slower recovery rate of NiCo₂O₄/MoS₂ nanocomposites requested indepth studies [4, 5].

As the promising green material, semiconductor photocatalyst has been widely concerned in many fields such as chemistry, material science, environmental science, etc. [6]. Photocatalytic semiconductor materials have many applications such as photocatalytic water to produce hydrogen and photocatalytic reduction of carbon dioxide, which have been considered as renewable clean energy and air purificator. Although solar energy is kind of rich, free, and renewable, the low conversion rate of semiconductor materials and its fast photocarriers recombination directly lead to the low efficiency and poor stability of photocatalytic materials, which limits the practical applications The photocatalytic efficiency [7]. of semiconductors depends not only on nanocomposites' response range, but also the separation and migration characteristics of photocarriers. Recently, the photocatalysis of nanocomposites was effectively improved by adding auxiliary catalysts and coupling with reasonable heterojunctions. In a traditional type-II heterojunction, photogenerated electrons were encouraged to move from the low potential conduction band of one semiconductor to the high potential conduction band of another semiconductor. Concurrently, photogenerated holes on the valence band moved in the opposite direction [8]. Combining semiconductors with

2023; 15:1-11

nanocomposites with appropriate band gaps, a promising strategy was provided to improve the photocatalytic activity of nanocomposites by extending the light response range and improving the separation efficiency of photo generated carriers [9]. Theoretically, when the band gap of semiconductor is larger than the potential of photodegradation hydrogen (1.23 eV), it can facilitate the reaction for producing hydrogen. The band gap of MoS₂ is usually 2.4 ev, which is а common semiconductor photocatalytic material [10]. In order to improve the shortcomings of NiCo₂O₄ such as fast recombination of photogenerated carriers and photocorrosion, many researchers have been carried out on NiCo₂O₄ such as NiCo₂O₄/TiO₂, NiCo₂O₄/BiVO₄, NiCo₂O₄/ZnFe₂O₄, NiCo₂O₄/ZnS, NiCo₂O₄/BiOCl/Ag₂CO₃, and ZnO/NiCo₂O₄/ CuSbS₂ [11]. Zinc tungstate (NiCo₂O₄) is a wolframite structure and has been widely used in the photodegradation of aquatic hydrogen and the degradation of organic pollutants. However, the band gap of NiCo₂O₄ (3.5 ev) limits its response to visible light [12]. The new NiCo₂O₄/MoS₂ nanocomposite has obvious photolysis activity for hydrogen production [13]. The remarkable photocatalytic performance is attributed to the effective movement of photogenerated electrons from MoS₂ to NiCo₂O₄ through the contact interface, hindering MoS₂ photogenerated carriers' recombination, and prolonging the carrier life [14].

The objectives of this study were to effectively solve the problems of low sensitivity and long response recovery time of NiCo₂O₄/MoS₂ gas sensor at room temperature. MoS₂ was employed as the carbon source in this study. It was proposed to synthesize gel 3D macroscopic columnar materials consisting of NiCo₂O₄/MoS₂ by combining MoS₂ with different non-metallic oxides such as N-type F₂O₃ and Si₂O₃ with MoS₂, P-type CuO with r GO using freezing and drying techniques. The aerogel nanocomposites were then characterized and tested for component sensitivity, and finally, the growth and gas sensitivity mechanisms were systematically analyzed. The NiCo₂O₄/MoS₂ nanocomposites with hollow hexahedral structure were designed and synthesized by hydrothermal method, and gas-sensitive properties at their room temperature were investigated. Through the analysis of the NiCo₂O₄/MoS₂ nanocomposites hydrogen production mechanism, structure, optical properties, and electrochemical properties, it would provide a new design scheme of NiCo₂O₄/MoS₂ nanocomposites and opened up a new application prospect for more effective use of solar energy.

Materials and Methods

Synthesis of MoS₂ nanorods

Molybdenum disulfide (MoS₂) nanorods were synthesized by using the simple solvothermal method. Briefly, 4.66 g of Mo(NO₃)₂·4H₂O and 3.45 g of thiourea were simultaneously dissolved in 70 mL of ethylenediamine and mixed at room temperature for 30 mins before transferred to PCL High Pressure Reactor (Tianjin Fuchen Chemical Reagent Factory, Tianjing, China) at 160°C for 24 hours. When reaching room temperature, it was washed repeatedly with deionized water and anhydrous ethanol and dried in FX101-0 Electric Blast Dryer (Sinopharm Chemical Reagent Co., Ltd, Shanghai, China) at 60°C for 8 hrs.

Preparation of NiCo₂O₄/MoS₂ nanocomposites

0.1 g of MoS₂ was dispersed in 30 mL of deionized water by ultrasound. $Mo(NO_3)_2 \cdot 4H_2O$ was dissolved in the above suspension, then 30 mL of $Na_2WO_4 \cdot 4H_2O$ solution was dropped in. After adding NH₄F and stirring for 30 mins, the same process was then conducted as MoS₂ [15]. NiCo₂O₄/MoS₂ composited with the mass ratio (wt) of NiCo₂O₄ to MoS₂ as 120%, 140%, and 160%, respectively, and were recorded as 1.2-NiCo₂O₄/MoS₂. Pure NiCo₂O₄ was prepared by the same method.

Structure and morphology characterization of NiCo₂O₄/MoS₂

Figure 1. XRD of photocatalytic materials.

The morphologies of MoS₂, NiCo₂O₄, and NiCo₂O₄/MoS₂ were explored by using Quanta FEG-250 Scanning Electron Microscope (SEM) (FEI, Hillsboro, Oregon, USA) and Hitachi H-800 Transmission Electron Microscope (TEM) (Hitachi, Tokyo, Japan) following manufacturers' instructions. Additional structure analysis was done by using D8-ADVANCE X-ray diffractometer (Bruker, Karlsruhe Germany) following manufacturer's instructions.

Photocatalytic experiment

30 mg of 1.4-NiCo₂O₄/MoS₂ composite was mixed with isopropanol (IPA), 1,4-benzoquinone (BQ), and methanol (MeOH) to capture hydroxyl radicals (\cdot OH), superoxide radicals (\cdot O₂), and photogenerated holes (H⁺) [16]. 50 mL of Mg (10 mg/L) was added and stirred for 30 mins under dark condition to ensure the adsorption desorption balance between the material and Mg solution [17]. After the dark reaction, the samples were treated by ultrasonic dispersion to make the NiCo₂O₄/MoS₂ materials disperse uniformly in the dye solution. Then, a 1 KW Xenon lamp was applied to simulate the visible light irradiation. 3 mL of samples were taken to a colorimetric tube every 20 mins, and the $NiCo_2O_4/MoS_2$ materials in the samples were UV-Vis removed by centrifugation. The

4

spectrophotometer was used to measure the absorbance of the supernatant [18]. The degradation efficiency of the sample to pollutants was calculated by the following formula:

$$D = \left(1 - \frac{C_t}{C_0}\right) \times 100\% \tag{1}$$

where C_0 and C_t were the equilibrium concentrations of Mg solution before and after photocatalytic reaction. Then, the reaction rate constant k was obtained from the first order kinetic equation.

Results and discussion

Structure and morphology characterization of $NiCo_2O_4/MoS_2$

The X-ray diffraction (XRD) patterns of MoS_2 , NiCo₂O₄, and NiCo₂O₄/MoS₂ composites were shown in Figure 1. The results showed that the diffraction peaks of the composites were in accordance with NiCo₂O₄ (JCPDS file No.15-0774) and monoclinic MoS₂ (JCPDS file No. 41-1049). NiCo₂O₄/MoS₂ composites showed that, when the mass ratio of NiCo₂O₄ to MoS₂ increased from

Figure 2. FE-SEM images of MoS₂ (a), TEM images of the pure MoS₂ (b), NiCo₂O₄ (c), NiCo₂O₄ (d), 1.4-NiCo₂O₄/MoS₂ composites (e), 1.4-NiCo₂O₄/MoS₂ composites (f), higher magnification TEM image (g), and EDS image (h).

1.2 to 1.6, the crystal structure of the samples had no obvious influence. As mass ratio increased, the diffraction peaks corresponding to 111 and -111 crystal faces of the composites at 30.47° and 30.72° increased gradually. The crystal diffraction peaks of NiCo₂O₄/MoS₂ were clear and well matched, which proved that the material had good crystallinity and two-phase structure without impurities.

The SEM and TEM images of MoS₂, NiCo₂O₄, and $NiCo_2O_4/MoS_2$ were shown in Figure 2. MoS_2 was in the shape of a long rod about 1 mm long and 35 nm wide (Figure 2a and 2b), while the NiCo₂O₄ had irregular granular morphology (Figure 2c and 2d). When NiCo₂O₄ and MoS₂ were combined, NiCo₂O₄ nanoparticles were uniformly loaded on MoS₂ rod (Figure 2e and 2f), which proved the intimate contact between NiCo₂O₄ and MoS₂. The homogeneous distribution of NiCo₂O₄ particles in MoS₂ was not only conducive to photocarriers movement, but also ensured that the active center was exposed to visible light at the same time. Figure 2g showed the high-resolution TEM image of NiCo₂O₄/MoS₂ for the further study of its crystal structure. The lattice spacing of 0.335 nm and 0.291 nm corresponded to the 002 crystal surface of MoS₂ and the 111 crystal surface of NiCo₂O₄, respectively. The EDS analysis

5

map of NiCo₂O₄/MoS₂ composite was shown in Figure 2h, which demonstrated the presence of O, W, Zn, S, and Mo. According to formula 2, 36 kinds of lattice modes could be obtained from the Raman spectra of NiCo₂O₄.

$$\Gamma = 8Ag + 10Bg + 8Au + 10Bu \tag{2}$$

In addition to 7 Au and 8 Bu, a total of 15 could be detected by infrared spectrum. Except that 1 Au and 2 Bu were acoustic vibration, only 18 lattice modes could be detected by Raman spectrum including 8 Ag and 10 Bg. Internal modes were caused by the WO bond stretching vibration of WO₆ octahedron and external modems were caused by the motion of WO₆ octahedron to an atom. To further study the structure and composition, the Raman spectra of MoS₂, NiCo₂O₄, and NiCo₂O₄/MoS₂ composites were studied (Figure 3). The six internal models of NiCo₂O₄ were the Ag models of 905 cm⁻¹, 707 cm⁻¹, 544 cm⁻¹, and the Bg models of 781 cm⁻¹, 676 cm⁻¹, 515 cm⁻¹. The diffraction peaks at 342 cm⁻¹ and 405 cm⁻¹ were caused by the mode deformation of Bg and Ag. The diffraction peaks at 303 cm⁻¹ and 606 cm⁻¹ were the first-order (1LO) and second-order (2LO) longitudinal optical phonon modes of MoS₂. In the Raman spectrum of 1.4-NiCo₂O₄/MoS₂ composite, there were

Figure 3. Raman spectra of MoS₂, NiCo₂O₄, and 1.4-NiCo₂O₄/MoS₂ composites.

three obvious diffraction peaks at 300 cm⁻¹, 600 cm⁻¹, and 905 cm⁻¹, respectively, which indicated that the coupling had no effect on the natural structure of NiCo₂O₄ and MoS₂.

Optical properties of NiCo₂O₄/MoS₂

In order to analyze the optical absorption characteristics and the recombination rate of photocarriers, the UV-Vis diffuse reflectance and photoluminescence spectra of MoS₂, NiCo₂O₄, and NiCo₂O₄/MoS₂ composites were measured. MoS₂ showed a wide visible light absorption region due to its narrow band gap, and its absorption band edge was about 525 nm, while the absorption band of NiCo₂O₄ was about 325 nm (Figure 4a). Compared with pure MoS₂, the light absorption ability of NiCo₂O₄/MoS₂ composite was obviously enhanced. It was shown that NiCo₂O₄/MoS₂ composite and MoS₂ had similar optical absorption range and optical response performance in the visible region, which was attributed to the successful coupling between NiCo₂O₄ and MoS₂. The PL spectra of MoS₂, NiCo₂O₄, and NiCo₂O₄/MoS₂ composites at an excitation wavelength of 350 nm were

observed. MoS₂ and NiCo₂O₄/MoS₂ had similar diffraction peak positions around 530 nm, while NiCo₂O₄ had no obvious diffraction peak (Figure 4b). Among them, the lower PL strength of 1.4- $NiCo_2O_4/MoS_2$ composites indicated that the combination of NiCo₂O₄ and MoS₂ could better inhibit the recombination of photogenerated carriers in MoS₂. According to the $(ahv)^{1/2}$ correlation curve, the band structure of NiCo₂O₄ and MoS₂ was determined from extension line intersection of the linear part and the X axis. α , h and v represented the absorption coefficient, Planck constant, and optical frequency, respectively. The obtained band gaps of NiCo₂O₄ and MoS₂ were approximately 3.5 eV and 2.24 eV (Figure 5a). Furthermore, the VB potential of the semiconductor material could be calculated by formula (3).

$$E_{VB} = X - E^c - 0.5E_g$$
(3)

where X was the absolute semiconductor electronegativity. E^c represented free electrons energy in the hydrogen scale (~4.5 eV). E_g

Figure 4. UV-vis diffuse absorption spectra (a) and PL spectra of MoS₂, NiCo₂O₄, and NiCo₂O₄/MoS₂ composites.

Figure 5. The band gap of NiCo₂O₄ and MoS₂ (a) and Valence-band XPS spectra of MoS₂ and NiCo₂O₄ (b).

represented the band gap energy. Therefore, the E_{VB} values of NiCo₂O₄ and MoS₂ were 3.56 eV and -1.81 eV, respectively. According to formula (4), the E_{CB} values of NiCo₂O₄ and MoS₂ were 0.06 eV and -0.43 eV, respectively.

$$E_{CB} = E_{VB} + E_g \tag{4}$$

Visible light did not excite NiCo₂O₄., making it impossible to produce \cdot O₂⁻ (0.08 eV vs. normal hydrogen electrode (NHE)) and H₂ (0 eV vs. NHE). Therefore, VB valence band spectrum of XPS had

further determined the occupied electron density and band position of NiCo₂O₄ and MoS₂. As shown in Figure 5b, the maximum energy edges of NiCo₂O₄ and MoS₂ occupying the highest electronic state density were 2.66 eV and 0.73 eV, respectively. The results showed that the highest occupied electron density of NiCo₂O₄ was mainly concentrated in the defect state, rather than the calculated valence band position of the band gap value. The calculated CB edge potentials of NiCo₂O₄ and MoS₂ were -0.84 eV and -1.51 eV, which were more negative than the potentials of O₂/ \cdot O₂⁻ and H⁺/H₂.

Figure 6. Photocatalytic H_2 evolution rate of MoS_2 and $NiCo_2O_4/MoS_2$ composites (a) and cyclic H_2 evolution curves of 1.4- $NiCo_2O_4/MoS_2$ and MoS_2 (b).

Photoelectrochemical properties of NiCo₂O₄/MoS₂

The comparison of the hydrogen production performance of MoS₂ and NiCo₂O₄/MoS₂ composites in photolysis was shown in Figure 6a. The Na₂S and Na₂SO₃ were used as sacrificial agents and no precious metal was used as the catalyst. Under visible light, pure MoS₂ underwent slow photolysis of water to produce hydrogen at only 1.21 mmol/h/g. In contrast, as the loading of NiCo₂O₄ increased, the hydrogen production activity of NiCo₂O₄/MoS₂ composites gradually increased. Among them, 1.4-NiCo₂O₄/MoS₂ composites had the highest hydrogen production rate from photolysis water at 79.27 mmol/h/g which was higher than the 1.2-NiCo₂O₄/MoS₂ at 62.66 mmol/h/g and the 1.6-NiCo₂O₄/MoS₂ at 73.93mmol/h/g. The results showed that the proper NiCo₂O₄/MoS₂ could improve its performance by enhancing visible light absorption and the photogenerated carriers' separation. As shown in Figure 6b, five sets of continuous hydrogen production experiments confirmed the stability of 1.4-NiCo₂O₄/MoS₂ composites to produce hydrogen from photolysis of water. On the other hand, the decreasing trend of the rate of hydrogen

production from photolysis of pure MoS₂ was more obvious, which proved that NiCo₂O₄/MoS₂ composites had higher practical applicability. To further prove the photogenerated carrier separation ability and the interfacial charge transport performance, MoS₂, NiCo₂O₄, and 1.4-NiCo₂O₄/MoS₂ composites were tested for transient photocurrent response and electrochemical impedance spectroscopy. The photocurrent response of 1.4-NiCo₂O₄/MoS₂ $(62.93 \,\mu\text{A/cm}^2)$ was the strongest one, which was better than that of pure MoS_2 (2.92 μ A/cm²) (Figure 7a). Due to the highly efficient synergistic effect between MoS₂ and NiCo₂O₄, the separation ability of a single semiconductor material was effectively improved, which reduced the recombination rate of photogenerated electrons and holes and showed a stronger photocurrent response of the composite material. In addition, because the absorption edge around 325 nm caused NiCo₂O₄ to respond only to ultraviolet light, NiCo₂O₄ did not show the photocurrent response. Compared with the Nyquist diagrams of pure NiCo₂O₄ and MoS₂, the diameter of the semicircle of 1.4-NiCo₂O₄/MoS₂ was reduced, which proved that the charge transfer resistance of 1.4-

Figure 7. Transient photocurrents response of MoS₂, NiCo₂O₄, and 1.4-NiCo₂O₄/MoS₂ composites in Na₂SO₄ solution under visible light irradiation (a) and the corresponding EIS of MoS₂ and NiCo₂O₄ (b).

Figure 8. Effects of different scavengers on the degradation of MG in the presence of 1.4-NiCo₂O₄/MoS₂ composites under visible-light irradiation.

NiCo₂O₄/MoS₂ composites was smaller under visible light irradiation (Figure 7b), which further explained that, due to the effective separation and the rapid transfer effect of composite material, the material had a smaller charge transfer resistance. In order to further study the photocatalytic mechanism of NiCo₂O₄/MoS₂ composites, the free radical capture experiments were performed with MG to verify the photogenerated carrier migration pathway. Benzoquinone (BQ), methanol (MeOH), and isopropyl alcohol (IPA) were used to capture superoxide radicals ($\cdot O_2^-$), photogenerated holes (H⁺), and hydroxyl radicals ($\cdot OH$). As shown in Figure 8, with the addition of IPA and MeOH, degradation efficiency of 1.4-NiCo₂O₄/MoS₂ composites for MG was basically unchanged, and when BQ was added to quench $\cdot O_2^-$, the degradation rate dropped to 65%, which indicated that $\cdot O_2^-$ was main active species. Under visible light, MoS₂ in the heterojunction photocatalytic material was excited by absorbing

photons, and photogenerated electrons in the defect state of MoS₂ were more easily transferred to NiCo₂O₄ through intimate contact. After rearrangement, a large number of photogenerated electrons appeared on NiCo₂O₄, and photogenerated holes remained on MoS₂, which achieved the purpose of physically separating photogenerated carriers and prevented their recombination. Therefore, photogenerated electrons on NiCo₂O₄ reacted with H⁺ to generate H₂, and O₂ which adsorbed on NiCo₂O₄ active center to generate free radicals. The structure of the NiCo₂O₄/MoS₂ composite material maintained the strong reducibility of MoS₂ photogenerated electrons and enhanced the effect of photolysis of water and hydrogen under visible light.

Conclusion

The NiCo₂O₄/MoS₂ composites were successfully prepared by in situ hydrothermal method in this study. Compared with MoS₂ of 1.21mmol/h/g, the hydrogen production by photolysis in visible light increased significantly by 79.27 mmol/h/g in NiCo₂O₄/MoS₂ composites, which remained stable without significant inactivation during the cyclic experiments. From the XPS spectra of NiCo₂O₄, MoS₂, and NiCo₂O₄/MoS₂ composites, the results showed that MoS₂ was the electron donor in the entire composite system. The free radical capture experiments demonstrated that free radical $\cdot O_2^-$ was the main active species, and the CB potentials of O_2/O_2^- (0.08 eV vs. NHE) and H^+/H_2 was more accurate than that of NiCo₂O₄, which illustrated the micro-mechanism of photoinduced carrier migration and separation between NiCo₂O₄/MoS₂ composites at the interface. The photocatalytic activity of NiCo₂O₄/MoS₂ composites was improved because under visible light, photogenerated electrons on MoS₂ were excited and migrated from MoS_2 to $NiCo_2O_4$, which retained the strong reduction of photogenerated electrons. In this study, a new type of NiCo₂O₄/MoS₂ composite material was designed, which provided a new idea for the more efficient use of solar energy for

photolysis of aquatic hydrogen and provided a new direction for clarifying the process of photogenerated carrier migration. However, the study only conducted the performance characterization of the composites in laboratory environment, and its small sample size made it difficult to accurately simulate the actual application scenarios. Therefore, additional analysis should be carried out in the subsequent study for the actual application scenarios.

References

- Tian Q, Wang X, Mao F, Guo X. 2018. Absorption performance of DMSA modified Fe₃O₄@SiO₂ core/shell magnetic nanocomposite for Pb²⁺ removal. J Cent South Univ. 25(4):709-718.
- Xu T, Zhou S, Tao H, Wang W, Zhang K. 2019. Influence of Ag on photocatalytic performance of Ag/ZnO nanosheet photocatalystsag. J Cent South Univ. 26(7):2011-2018.
- Hümmelgen IA. 2017. Organic electronic solid state device: electrochemistry of material preparation. J Solid State Electrochem. 21(7): 1977–1985.
- Gurzęda B, Buchwald T, Nocuń M, Bąkowicz A, Krawczyk P. 2017. Graphene material preparation through thermal treatment of graphite oxide electrochemically synthesized in aqueous sulfuric acid. RSC Advances. 7(32):19904-19911.
- Xie Y, Li Y, Wei G, Liu Q, Mundoor H, Chen Z, *et al.* 2018. Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation. Nanoscale. 10(9):4218-4227.
- Zhao Y, Gan Y, Zhang L, Chu Z, Zhang W. 2018. Preparation of ordered mesoporous carbon material based on poly-dopamine and its application in selective enrichment of n-linked glycans. Anal Methods. 10(7):775-782.
- Panahi S, Es'haghi M. 2018. Preparation and electrochemical characterization of PANI/MnCo₂O₄, nanocomposite as supercapacitor electrode material. Can J Chem. 96(5):477-483.
- Michelina C, Flavia B, Alice SC, Piercarlo M. 2017. Al₂O₃·2SiO₂ powders synthesized via sol–gel as pure raw material in geopolymer preparation. J Am Ceram Soc. 100(5):1919-1927.
- Jonna O, Juho AS, Henrikki L. 2017. Preparation of cellulose nanocrystals from lignin-rich reject material for oil emulsification in an aqueous environment. Cellulose. 25(1):293-304.
- Anna K, Joanna B, Anita TZ, Paulina Z, Marta R. 2017. Structural properties of TiO₂ nanomaterials. J Mol Struct. 1157(5):327-336.
- Feng X, Wang C, Ding S. 2019. Performance of desulfurization ash for the preparation of grouting fire prevention material. Environ Sci Pollut Res. 26(1):19228–19240.
- 12. Jun Y, Heng W, Min C, Yang M. 2019. Recent advances in graphene-based nanomaterials: properties, toxicity and

applications in chemistry biology and medicine. Microchimica Acta. 186(6):395.

- Liu XY, Yang XY, Du H, Wu Y, Zhang J. 2018. Preparation and characterization of a porous silicate material using a CO₂storage material for CO₂ adsorption. Powder Technology. 333(15):138-152.
- Liu L, Yang XL, Ye XD, Zhong C. 2017. Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO₂/bacterial cellulose nanocomposite. Carbohydr Polym. 174(15):1078-1086.
- Li XL, Zhu JF, Fang Y, Lv WJ, Liu Y, Liu H. 2018. Hydrothermal preparation of CoO/Ti₃C₂ composite material for lithium-ion batteries with enhanced electrochemical performance. J Electroanal Chem. 817(15):1-8.
- Li Y, Xu Y, Fleischer CC, Huang J, Lin R, Yang L, *et al.* 2018. Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications. J Mater Chem B. 6(1):9-24.
- 17. Benjamin L, Alice J, Gillen NS, Wu SJ, Ardemis A. 2019. Directed evolution of the optoelectronic properties of synthetic nanomaterials. Chem Comm. 55(22):3239-3242.
- Hoo CL, Soon JL, Jungkil K, Kyoung HK, Hong GP. 2019. Unique scattering properties of silicon nanowires embedded with porous segments. ACS Appl Mater Interfaces. 11(23):21094-21099.