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Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis. The increase of drug-resistant 
strains of the bacterium necessitates a continuous search for alternative antimicrobial drugs from other sources 
such as medicinal plants like Bidens pilosa. Bidens pilosa has been used extensively in South Africa as a traditional 
medicine to treat diseases such as TB, inflammation, immunological disorders, digestive disorders, infectious 
diseases, cancers, metabolic syndrome, and wounds. Several studies have shown the extracts and compounds of 
B. pilosa to possess anti-mycobacterial, antitumor, anti-inflammatory, antidiabetic, antimalarial, and anticancer 
activities. Therefore, this study aimed to conduct a phytochemical analysis and determine the anti-mycobacterial 
activity of crude extracts of Bidens pilosa. Phytochemical analysis was done by using standard methods. Total 
phenols, flavonoids, and tannins were evaluated by using colorimetric techniques. The antioxidant activity was 
assessed by using Thin Layer Chromatography (TLC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2, 2-azino-bis (3-
ethyl-benzthioziline-6-sulfonic acid) (ABTS) assays. The anti-mycobacterial activity was determined by using well 
diffusion and micro-dilution assays against selected Mycobacterium strains. The High-Performance Liquid 
Chromatography (HPLC) analysis was done to profile phenolic compounds in the extracts. The phytochemical 
screening showed that B. pilosa contained tannins, alkaloids, steroids, cardiac glycosides, phenols, and terpenoids 
in the fresh plant material (FPM) and dried plant material (DPM). The quantitative analysis showed that the DPM 
extracts had higher phenol, tannin, and flavonoid content than that of the FPM extracts. The highest phenolic and 
tannin contents were found in methanolic extracts of the DPM with 130 ± 0.01 GAE mg/g and 588.84 ± 0.30 mg 
TAE/g, respectively. The highest total flavonoid content (TFC) was found in the DPM of the ethanol extracts at 
51.23 ± 0.40 QE mg/g. The IC50 values for FPM and DPM ranged from 0.511 mg/mL to 0.5113 mg/mL by using DPPH 
and ABTS, respectively. The DPM of ethanol and acetone extracts exhibited anti-mycobacterial activity against M. 
avium, M. smegmatis, M. terrae, and M. tuberculosis with a MIC value of 6.25. The HPLC analysis revealed the 
presence of phenolic compounds. In conclusion, the DPM extracts of B. pilosa had more phytochemicals present 
in the extract and exhibited higher antioxidant activity and anti-mycobacterial activity than that of the FPM 
extracts, which could be explored for potential drugs related to mycobacterium diseases. 
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Introduction 
 
Tuberculosis (TB) is an infectious disease caused 
by Mycobacterium tuberculosis [1, 2]. It is a 
severe health issue, especially in rural areas of 

developing countries [3, 4]. The top 8 countries 
with the most infections are India, China, 
Indonesia, Philippines, Pakistan, Nigeria, 
Bangladesh, and South Africa [5]. In 2021, the 
World Health Organization (WHO) reported that 
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about 304,000 people in South Africa had been 
diagnosed with TB, and approximately 56,000 
had died due to this illness [6, 7]. In 2021, 
450,000 cases of Multidrug-resistant tuberculosis 
(MDR-TB)/rifampicin-resistant TB (RR-TB) 
worldwide were caused by strains resistant to 
isoniazid (INH) and rifampin (RIF) [5]. COVID-19 
has also become a global threat [6, 7]. Individuals 
infected by TB, human immunodeficiency virus 
(HIV), and acquired immunodeficiency syndrome 
(AIDS) are at a higher risk of infection by 
coronavirus as it shows symptoms similar to TB 
[8, 9]. Consequently, the incidence of TB 
observed a surge of approximately 3% compared 
to the 437,000 cases documented in 2020. This 
increase was associated with a substantial 
mortality rate of approximately 191,000 deaths, 
predominantly caused by MDR/RR-TB [6]. It is 
predicted that the increasing number of COVID-
19 infections may result in an additional 6.3 
million cases of TB in 2020-2025 with 1.4 million 
deaths [10]. In 2019, approximately half a million 
people had RR-TB, resulting in about 78% of 
MDR-TB cases globally [7]. In South Africa, MDR-
TB is a serious threat with about 76% of MDR-TB 
patients co-infected with HIV resulting in a 
mortality rate of about 71% in KwaZulu-Natal 
Province [11, 12].  
 
Irrespective of the new antibiotics produced 
against diseases, TB remains a global health 
threat [13, 14], and new drugs are required to 
counteract the disease [15]. Medicinal plants 
have been used for decades to treat, manage, 
and control various diseases [16-18]. The 
determination of antibacterial activities of 
different medicinal plants has become of 
particular interest due to the current global issue 
of increasing antibiotic resistance of 
microorganisms. Resistance continues to 
intimidate the prevention and treatment of 
infections caused by bacteria, parasites, viruses, 
and fungi. Bidens pilosa L. from the family 
Asteraceae [19, 20] commonly known as Black 
Jack [21] is a medicinal plant from tropical and 
Central America and is distributed worldwide 
[22]. The plant has been used as a traditional 
medicine to treat diseases such as TB, fever, 

influenza, angina, diabetes, oedema (water 
retention), fungal and bacterial infections, 
inflammation, and gastroenteritis [23, 24]. 
Bidens pilosa has about 201 compounds 
comprising 70 aliphatics, 60 flavonoids, 25 
terpenoids, 19 phenylpropanoids, 13 aromatics, 
8 porphyrins, and 6 other compounds [25]. 
Phytochemicals play a significant role in 
identifying crude drugs [26], which implies that 
compounds or a mixture of compounds that have 
positive activity in mammalian cells are potential 
therapeutic agents and can be used as leads 
toward the development of new drugs [27]. The 
study of numerous medicinal plants has 
improved rapidly due to their antibacterial and 
antioxidant activities, low toxicity, and the 
potential to be a cheaper alternative to costly 
synthetic drugs. Van Puyvelde et al. showed the 
leaves of B. pilosa sampled from Rwanda having 
antimicrobial activity against M. tuberculosis 
[28]. However, there is limited scientific 
information on the anti-mycobacterial activity of 
B. pilosa extracts [29]. The phytochemical 
analysis and anti-mycobacterium activity 
research of Bidens pilosa crude extracts hold 
substantial significance in medicinal applications 
and drug development. Understanding the 
phytochemical makeup of the plant can offer 
insights into its therapeutic properties and 
potential uses, while evaluating its anti-
mycobacterium activity can contribute to finding 
new treatments for diseases like tuberculosis, 
especially given the rise of drug-resistant strains. 
This research validated the traditional usage of 
the plant in medicine. Moreover, developing 
effective, affordable medications from Bidens 
pilosa could have profound economic 
implications, particularly in low- and middle-
income countries facing a high burden of diseases 
like tuberculosis. 
 
 

Materials and Methods 
 

Collection of plant  
Bidens pilosa plants were collected from the Vaal 
University of Technology, Vanderbijlpark, South 
Africa. A botanist authenticated the sample. The 
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voucher specimen (PUC0015461) was deposited 
in the AP Goossens Herbarium, North-West 
University, Potchefstroom, South Africa. 
 
Preparation of plant extracts  
The whole plant of B. pilosa was washed and 
divided into two equal parts. One part was used 
as fresh material (FPM), and the other was air-
dried (DPM) for 2 weeks. The FPM was extracted 
by using five solvents including water (crude 
extract was boiled at 100°C for 10 minutes and 
cooled), acetone, methanol, hexane, and ethanol 
(Sigma-Aldrich, Darmstadt, Germany) by 
maceration 500 g plant materials in 1,000 mL of 
solvent for 24 h for each solvent with constant 
shaking. Five solvents were also used to extract 
the DPM with 500 g plant materials into 1,000 mL 
of solvent by maceration for 24 h for each solvent 
with constant shaking. The homogenates were 
then filtered through 0.45 µm pore size 
Whatman® filter paper (Cytiva, Malborough, MA, 
USA), and the solvents were dried by using fume 
hood evaporation (Labex, Edenvale, South 
Africa). At the same time, the aqueous extracts 
were lyophilized by using Scanvac Coolsafe freeze 
dryer (Apex Scientific, Durban, South Africa). The 
plant extracts using water, acetone, methanol, 
hexane, and ethanol were annotated as below:  
 
FPM and DPM using methanol:  FME & DME 
FPM and DPM using ethanol:  FEE & DEE 
FPM and DPM using acetone:  FAE & DAE 
FPM and DPM using hexane:   FHE & DHE 
FPM and DPM using water:  FWE & DWE 
 
The percentage yield of each solvent extract was 
calculated by using the following equation:  
 

 
 
where the actual yield (g) was the amount of 
extracted sample, and the theoretical yield (g) 
was the amount of raw plant material. Extracts 
were prepared to a concentration of 100 mg/mL 
for subsequent assays.  
 

Qualitative phytochemical screening  
Bidens pilosa extracts (100 mg/mL) were 
subjected to preliminary phytochemical 
screening according to standard methods 
reported by Harbone [30] for the detection of the 
following constituents. 
 
1. Flavonoid alkaline reagent test for flavonoids  
Three (3) milliliters of plant extract were treated 
with 1 mL of 10% NaOH solution. The formation 
of an intense yellow color indicated the presence 
of flavonoids.  
 
2. Ferric chloride test for tannins and phenols 
Two milliliters of 5% solution of FeCl3 was added 
to 1 mL of crude extract. A black or blue green 
color indicated the presence of tannins and 
phenols.  
 
3. Keller-Killani test for cardiac glycosides  
Two milliliters of plant extracts were treated with 
2 mL of glacial acetic acid containing a drop of 
FeCl3. A brown-colored ring or brown violet 
under a brown-greenish layer indicated the 
presence of cardiac glycosides.   
 
4. Mayer's test and Wagner's test for alkaloids 
Approximately 3 mL of extracts were added to 3 
mL of 1% HCl and heated for 20 minutes. The 
mixtures were then cooled, and 1 mL of Mayer's 
reagent or 1 mL of Wagner's reagent (Sigma-
Aldrich, Darmstadt, Germany) was added 
dropwise. The formation of a greenish-colored or 
cream precipitate (Mayer’s test) or a reddish-
brown precipitate (Wagner’s test) indicated the 
presence of alkaloids, respectively.  
 
5. Terpenoids 
Approximately 2 mL of chloroform and 3 mL of 
H2SO4 were added to 5 mL of plant extracts. A 
reddish-brown coloration was taken as a positive 
test for terpenoids.  
 
6. Saponins 
About 3 mL of plant extracts were added to 3 mL 
of distilled water and shaken vigorously. A stable, 
persistent froth was formed as a positive test for 
saponins.  



Journal of Biotech Research [ISSN: 1944-3285] 2023; 15:116-137 

 

119 

 

7. Phlobatannins 
Two milliliters of 1% HCl were added to 3 mL of 
plant extracts and boiled. The deposition of a red 
precipitate was taken as evidence of the 
presence of phlobatannins.  
  
8. Steroids 
Five milliliters of chloroform and 5 mL of H2SO4 
were added to 500 µL of the prepared plant 
extracts. The presence of steroids was indicated 
by a color change from violet to blue or green or 
a ring of blue/green or if the upper layer turned 
red and the sulfuric layer was yellow with green 
fluorescence.   
 
Quantitative Phytochemical Analysis   
1. Determination of total phenolic content (TPC)  
The concentration of TPC in all the plant extracts 
was measured according to the 
oxidation/reduction reaction reported by Škerget 
et al. [31] by using the Folin-Ciocalteu reagent 
(Sigma-Aldrich, Darmstadt, Germany). A volume 
of 0.5 mL of diluted extracts (100 mg/mL), 2.5 mL 
of Folin-Ciocalteu reagent (diluted 10 times with 
distilled water), and 2 mL of Na2CO3 (7.5%) were 
mixed and incubated in a 50°C oven (Labcon, 
Krugersdorp, South Africa) for 5 mins and then 
cooled. Distilled water (0.5 mL) was used as a 
negative control for the experiment. The 
absorbance of the standard Gallic acid solution 
(0.5 mg/mL) was measured by using T60 UV-
Visible Spectrophotometer (PG Instruments, 
Leicestershire, UK) at 760 nm with 500 µL of 50, 
100, 150, 200, and 250 μg/mL methanolic Gallic 
acid solutions. All tests were performed in 
triplicate, and a standard curve was established. 
The total phenol value was obtained from the 
equation:  
 

Y = 0.0106X + 0.1246 
 
and was expressed as mg/g Gallic acid equivalent 
(mg GAE/g) by using the formula below. 
 

C = cV/M 
 
where C was the total content of phenolic 
compounds (mg GAE/g). c was the concentration 

of Gallic acid (µg/mL) established from the 
calibration curve. V was the volume of extract 
(0.5 mL). m was the weight of pure plant extract 
(0.05 g). 
  
2. Determination of total tannin content (TTC) 
The total tannin content was determined by 
using Folin Ciocalteu method [32]. Approximately 
0.5 mL of Folin Ciocalteu reagent and 1 mL of 35% 
Na2CO3 solutions were added to 0.1 mL of plant 
extracts (100 mg/mL) diluted with distilled water 
up to 10 mL. The absorbance was measured at 
725 nm after 45 minutes of incubation at 
ambient temperature. The standard absorbance 
curve of Tannic acid solution (0.1 mg/mL) was 
established by using 500 µL of 50, 100, 150, 200, 
and 250 μg/mL tannic acid solutions. All tests 
were performed in triplicate. The total tannic 
acid values were obtained from the equation: 
 

Y = 0.0046X + 0.0098  R² = 0.9994 
 
and expressed as tannic acid equivalent (TAE) 
using the formula below.  
 

C = cV/M 
 
where C was the total content of tannins 
compounds in mg TAE/g of dry weight. c was the 
concentration of tannic acid (µg/mL) established 
from the calibration curve. V was the volume of 
extract (0.5 mL). m was the weight of pure plant 
extract (0.05 g). All the measurements were 
carried out in triplicate.  
 
3. Determination of total flavonoid content 
(TFC)  
Total flavonoid content was measured by using 
Aluminium chloride colorimetric method [33] 
with some modifications. Approximately 0.5 mL 
aliquot of AlCl3 (1.2%) and potassium acetate 
(120 mM) were mixed with 0.5 mL of the plant 
extracts (100 mg/mL) and diluted with acetone to 
2 mL. The reaction was allowed to stand at 
ambient temperature for precisely 30 minutes 
before the absorbance was measured at 415 nm. 
Quercetin was used as a standard with 20, 40, 60, 
80, and 100 μg/mL methanol quercetin solutions 
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to establish a calibration curve. The total 
flavonoid content expressed as mg quercetin 
equivalent (QE)/g of dried plant material was 
calculated based on the calibration curve by 
using the following equation:  
 

Y = 0.0175X – 0.0061 
 
where X was the absorbance and Y was the 
concentration (mg QE) of the methanol quercetin 
solutions. All the experiments were carried out in 
triplicate.  
 
Antioxidant activity of B. pilosa crude extracts 
1. Thin Layer Chromatography (TLC) 
The chemical constituents and antioxidant 
activity of B. pilosa extracts were detected by 
using Silica gel 60, F254 TLC plates (Merck KGaA, 
Darmstadt, Germany). 4 µL of each extract (100 
mg/mL) was loaded on the TLC plates and 
saturated in two different eluent solvent systems 
with different polarities including benzene/ethyl 
acetate/ammonia hydroxide (BEA) (9:1:0.1) and 
chloroform/ethyl acetate/formic acid (CEF) 
(5:4:1). The TLC plates were dried in a fume hood. 
The compounds on the TLC plates were examined 
and sprayed with vanillin-sulphuric acid reagent 
(0.1 g vanillin:28 mL methanol:1 mL concentrated 
sulfuric acid) and heated at 110°C for color 
development. A second TLC chromatogram of 
the same extracts was sprayed with DPPH 
reagent (1,1-diphenyl-2-picrylhydrazyl) (Sigma-
Aldrich, Darmstadt, Germany) and allowed to 
stand for 5 minutes. Antioxidants were detected 
by a color change from deep purple to yellow 
white. 
 
2. DPPH radical scavenging assay 
1 mL of the extracts at different concentrations 
of 0.01, 0.1, 0.5, and 1.0 mg/mL were mixed with 
1 mL of 0.12 mM DPPH solution. After shaking, 
the mixture was incubated at ambient 
temperature in the dark for 30 mins, and then the 
absorbance was measured at 517 nm. Acetone 
was used as a negative control while L-ascorbic 
acid was used as a positive control. The radical 
scavenging activity was determined as the 

percentage of inhibition using the following 
equation:  
 

 
 
where Acontrol was the absorbance of DPPH 
solution without any sample. Atest was the 
absorbance of DPPH solution with sample. The 
inhibitory concentration (IC50) value was the 
sample concentration required to scavenge 50% 
DPPH free radicals. All the tests were carried out 
in triplicate.  
 
3. ABTS radical scavenging assay  
A 7 mM stock solution of 2, 2-azino-bis (3-ethyl-
benzthioziline-6-sulfonic acid) (ABTS) (Sigma-
Aldrich, Darmstadt, Germany) was prepared in 
double-distilled water. The ABTS radical cation 
was prepared by adding 88 μL of 140 mM 
potassium persulfate to 5 mL of ABTS solution 
and stored in the dark for 12-16 h. The ABTS 
solution was then diluted with cold ethanol to a 
final absorbance of 0.70 ± 0.02 at 734 nm and 
37°C before the test. Plant extracts at different 
concentrations of 0.01, 0.1, 0.5, and 1.0 mg/mL 
were prepared. L-ascorbic acid was used as the 
positive control, while acetone was used as the 
negative control. The extracts' total scavenging 
capacities were quantified by adding 1,000 μL of 
ABTS to 50 μL of each plant extract. The reactions 
were incubated at 37℃ for 4 mins before the 
absorbance at 734 nm was recorded. All the 
experiments were carried out in triplicate.  
 
Anti-mycobacterial activity  
1. Preparation of Mycobacterium media and 
culture 
The Gram-positive Mycobacterium smegmatis 
ATCC 19420™, Mycobacterium avium 
ATCC15769/2529™, Mycobacterium terrae ATCC 
15755™, and Mycobacterium tuberculosis ATCC 
25177™ (Microbiologics, Johannesburg, South 
Africa) were used for the current study. 
Mycobacterium cultures were inoculated in 
Middlebrook 7H9 broth (Sigma-Aldrich, 
Darmstadt, Germany) for ± 2-3 days at 37°C with 
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constant shaking. The same broth was also used 
with the enrichment albumin dextrose catalase 
supplement (ADC) (Sigma-Aldrich, Darmstadt, 
Germany) for Mycobacterium sp. Culture. 
Following the initial incubation, the organisms 
were subcultured on Middlebrook 7H11 agar 
(Sigma-Aldrich, Darmstadt, Germany) and 
incubated at 37°C for 24 hours to detect 
contamination. The oleic albumin dextrose 
catalase (OADC) enrichment (Sigma-Aldrich, 
Darmstadt, Germany) with glycerol was used to 
culture Mycobacterium sp. and maintained in 
Middlebrook broth at 4°C. Grown 
mycobacterium cultures were sub-cultured on 
freshly prepared broth for 24 h at 37°C before the 
anti-mycobacterial test. The Middlebrook 7H11 
agar was used for the well diffusion assay, and 
the Middlebrook broth was used to perform the 
minimum inhibition concentration (MIC) assay.  
 
2. Well diffusion test 
A modified well diffusion test was used as a 
preliminary screening method for the 
antimicrobial potential of the plant extracts [34]. 
The agar plates were uniformly inoculated with 
the appropriate test organism to obtain 
confluent growth. Wells (made from sterile 
bottom parts of 200 µL pipette tips, 5 mm in 
diameter) were created in the Middlebrook 
extract. Approximately 20 µL of the plant extract 
(100 µg/mL) was added to the wells. Sterile 
distilled water (20 µL) was used as a negative 
control with Rifampicin as a positive control. The 
Petri dishes were incubated at 37°C for 24 hours. 
The level of mycobacterial susceptibility was 
determined according to the size of the zone of 
inhibition, which was measured in mm using a 
ruler. 
 
3. Microtiter minimum inhibitory assay 
The minimum inhibitory concentration (MIC) for 
the anti-mycobacterial activity of B. pilosa crude 
extracts was determined by the method of Elloff 
with some modifications [35]. Briefly, 
Mycobacterium cultures were grown at 37°C 
overnight with constant shaking. 100 µL of each 
extract (100 mg/mL) were diluted two-fold with 
sterile broth in the 96-well microtiter plate for 

each of the four Mycobacterium strains. 100 µL 
of the Mycobacterium culture were then added 
to a 96-well plate with Rifampicin at 50 mg/mL as 
the positive control and sterile broth as the blank. 
The plates were covered and incubated at 37°C 
for 24 hours before 50 µL of 0.2 mg/mL p-
iodonitrotetrazolium chloride (INT) (Sigma-
Aldrich, Darmstadt, Germany) was added to all 
wells and incubated at 37°C for additional 8 h. A 
reddish pink color indicated bacterial growth in 
the wells. MIC was determined as the lowest 
concentration inhibiting the respective 
microorganisms' growth. All the assays were 
performed in triplicate. 
 
Identification of phenolic compounds in B. 
pilosa crude extracts  
1. Preparation of standard solutions and crude 
extracts 
Ascorbic acid, Gallic acid, Resorcinol, Vanillin, 
Tannic acid, Acetyl Salicylic acid, and Benzoic acid 
(Sigma-Aldrich, Darmstadt, Germany) were used 
as standard solutions for the identification of 
phenolics present in B. pilosa extracts according 
to the method of Mradu et al. with slight 
modifications [36]. 1 g of each standard 
compound was dissolved in 10 mL of high-
performance liquid chromatography (HPLC) 
grade methanol (Sigma-Aldrich, Darmstadt, 
Germany). The compounds (10 mg/mL) were 
sonicated and filtered by using a 0.45 µm, 47 mm 
diameter nylon membrane filter (Labchem, 
Darmstadt, Germany) before being analyzed in 
Agilent 1200 Infinity Series HPLC (Thermo 
scientific, Waltham, MA, USA). 2 g of fresh and 
air-dried B. pilosa extracts prepared using 
different solvents was dissolved in 4 mL of 
acetone, ethanol, and methanol, resulting in 500 
mg/mL concentration. Before injection into the 
column, the samples were sonicated and 
subsequently filtered through a nylon membrane 
filter with a 47 mm diameter and 0.45 µm pore 
size (Labotec, Midrand, South Africa). All the 
standard samples were analyzed by using 515 
HPLC pumps and 2489 UV/VIS with Symmetry 
C18 (5 µm, 4.6 × 250 mm) reverse-phase water 
guard column and Hamilton microliter syringe 
(Thermo  Scientific,  Waltham,  MA,  USA)  at  the 
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Figure 1. Percentage yield (%) of extracts from fresh and dried B. pilosa using different solvents. 

 
 
injection volume of 20 µL. The data analysis was 
done by using the Agilent software. The gradient 
elution of Solvent A (Acetonitrile) and Solvent B 
(0.1% Phosphoric acid in water) was used. The 
gradient program started with 8% of Solvent A for 
the first 35 minutes and then increased to 22% 
for the next 10 minutes before bringing it down 
again to 8%. The UV wavelength was set at 280 
nm at 25°C with a flow rate of 1.0 mL/min for 45 
minutes. 
 
Statistical analysis 
Each experiment was conducted in triplicate for 
replicability. Subsequent data analysis was 
performed through Microsoft Excel, and the 
results were represented as mean values with 
standard deviations (n=3). IC50 values were 
determined by using the software Graphpad 
Prism 8.0.2 (GraphPad Software, Boston, MA, 
USA). A P value of less than 0.05 was set as the 
threshold for statistical significance. 
 
 

Results 
 
The percentage yield of B. pilosa (%) using 
different extraction solvents  
The percentage yields of crude extracts ranged 
from 2.28 - 6.72% in methanol, 2.65 - 6.20% in 

ethanol, 2.09 - 4.78% in acetone, 1.79 - 4.97% in 
water, and 0.83 - 2.45% in hexane (Figure 1). The 
highest percentage yield of the extracts from 
DPM was obtained in ethanol, while hexane 
giving the lowest yield. Methanol produced the 
highest potential yield for FPM, while hexane 
gave the lowest yield.  
 
Qualitative preliminary phytochemical analysis 
The preliminary phytochemical screening was 
conducted on all ten crude extracts of B. pilosa. 
Tannins, phenols, terpenoids, and saponins were 
presented in both FPM and DPM extracts (Table 
1). Cardiac glycosides were presented in all the 
extracts except for FAE, DAE, and FEE. Alkaloids 
were presented in FWE, DWE, FAE, DAE, FEE, 
DEE, and DME and absented in FME, FHE, and 
DHE. Steroids were presented in FWE, FAE, DEE, 
FME, DME, and FHE and absented in DWE, DAE, 
FEE, and DHE. Phlobatannins were absent in all 
crude extracts. 
  
Quantitative phytochemical analysis 
The Folin-Ciocalteu and Aluminium chloride 
methods were used to determine the total 
phenolic, tannin, and flavonoid contents of the 
crude extracts of B. pilosa. DPM extracts had 
higher phenols, tannins, and flavonoid contents 
than that of  FPM  (Table 2).  In FPM extracts, the 
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Table 1. Phytochemical screening results for B. pilosa crude extracts obtained from five different solvents for FPM and DPM. 
 

No. Compounds FWE DWE FAE DAE FEE DEE FME DME FHE DHE 

1. Flavonoids ++ ++ ++ ++ + ++ + ++ + ++ 

2 Tannins +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 

3 Phenols +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 

4 Cardiac glycoside + + - - - ++ - ++ +++ +++ 

5 Alkaloids 
Mayer’s test 
Wagner’s test 

 
+ 

++ 

 
++ 
++ 

 
+ 
+ 

 
++ 
++ 

 
+ 
+ 

 
++ 
++ 

 
- 
- 

 
++ 
- 

 
- 
- 

 
- 
- 

6 Tepernoids + ++ +++ + +++ +++ +++ +++ +++ ++ 

7 Saponins ++ ++ + ++ ++ ++ + ++ ++ + 

8 Phlobatannins  - - - - - - - - - - 

9 Steroids  + - ++   + + ++ ++ - 
Notes: +++: intense positive; ++: strong positive; +: weak positive; -: negative.  

 
 
Table 2. Total phenolic, tannin, and flavonoid contents of FPM and DPM of B. pilosa plant crude extracts. 
 

Plant extract Phenolic content (mg GAE/g)  Tannin content (mg TAE/g) Flavonoid content (mg QE/g) 

FPM DPM FPM DPM FPM DPM 

Acetone 106.97±0.01a 111.29±0.30 a 187.39±0.01a 328.70±0.20a 49.43±0.01a 38.16±0.40a 

Methanol 113.76±0.1 a 130.43±0.01 a 204.05±0.01a 588.84±0.30b 50.11±0.92b 50.96±0.60b 

Ethanol 108.35±0.01 a 124.29±0.30a 214.92±0.10a 383.04±0.30c 50.79±1.00c 51.23±0.40c 

Aqueous 102.65±0.01 a 87.83±0.01 a 170.72±0.10a 311.30±0.01d 48.09±0.97d 36.03±0.10a 

Hexane 83.51±0.03 a 86.60±0.03b 162.75±0.01a 217.83±0.02d 37.22±0.40a 37.15±0.10a 
Notes: Data represented the mean ± SD of FPM and DPM extracts (n = 3). Means within a column showing the same small letter were not 
significantly different (P > 0.05) according to the t-test.   
 
 
highest phenolic content was found in ethanol at 
113.76 ± 0.1 mg GAE/g, whereas for DPM, the 
highest TPC was found in methanol at 130.43 ± 
0.01 mg GAE/g. No statistically significant 
difference in the phenolic contents of FPM and 
DPM extracts was observed (P > 0.05) except for 
the hexane extracts. There was a higher 
concentration of tannins (214.92 ± 0.10 mg 
TAE/g) in the ethanol extracts of FPM and 
methanol (588.84 ± 0.30 mg TAE/g) by using 
DPM. The total tannin content of DPM extracts 
showed significant differences among all the 
extracts (P < 0.05) except in water and hexane. 
No significant differences were observed among 
FPM extracts (P > 0.05). The TFC of DPM extracts 
was found to be 51.23 ± 0.40 mg QE/g in DEE, 
while TFC of FPM extracts was 50.11 ± 0.92 mg 
QE/g of dry/fresh weight in FEE. The total tannin 
contents of DPM and FPM extracts showed 
significant differences between methanol, 

acetone, and ethanol (P < 0.05), while there was 
no difference in water and hexane (P > 0.05). 
 
Antioxidant activity of B. pilosa using thin layer 
chromatograph, DPPH, and ABTS assays 
Thin layer chromatograph (TLC) was used as a 
qualitative indicator for detecting antioxidant 
activity in FPM and DPM extracts of B. pilosa by 
using DPPH as an indicator. The results showed 
various bands with more bands in DEE and DAE. 
An intense color resolution displaying different 
compounds in B. pilosa extracts was better 
resolved in BEA (benzene : ethyl acetate : 
ammonia hydroxide) than in CEF (chloroform : 
ethyl acetate : formic acid) solvent system. 
Antioxidant activity indicated by yellow-whitish 
bands after spraying with DPPH was intense in 
both FPM and DPM extracts, especially in CEF 
solvent system (Figure 2). The DPPH scavenging 
activity  of  DPM  extracts  using different solvents
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Figure 2. Thin layer chromatogram fingerprint profile of FPM and DPM extracts of B. pilosa (100 mg/mL) were separated in BEA (upper) and CEF 
(below) solvent system and sprayed with vanillin sulfuric acid and DPPH reagents for visualization. Lanes 1: FEE, 2: FWE, 3: FAE, 4: FME, 5: FHE, 6: 
DEE, 7: DWE, 8: DAE, 9: DME, 10: DHE. 

 
 
Table 3. IC50 values of B. pilosa for DPPH and ABTS assays using FPM and DPM. 
 

Plant Extract DPPH IC50 (mg/mL) ABTS IC50 (mg/mL) 

DPM FPM DPM FPM 

Acetone 0.061 0.223 0.076 0.239 

Ethanol  0.055 0.078 0.057 0.155 

Methanol  0.061 0.209 0.173 0.349 

Water  0.067 0.256 0.167 0.504 

Hexane 0.127 0.132 0.058 0.188 

Ascorbic acid 0.00243 - 0.00141 - 

 
 
ranged between 37.39 ± 0.01 to 92.75 ± 0.01% 
was shown in Figure 3A. The highest scavenging 
activity was observed in DAE (66.67 ± 0.02 - 92.75 
± 0.01%) and the lowest in DHE (37.39 - 75.33 ± 
0.01%). Ascorbic acid was used as a positive 
control and displayed higher antioxidant activity 
in all concentrations. Contrary to DPM, FPM 
showed a slightly lower DPPH scavenging activity 
ranging from 31.28 to 89.97% (Figure 3B). The 
highest antioxidant scavenging activity was 

observed in FEE (45.03 ± 0.03 - 89.97 ± 0.00%) 
and the lowest in FHE (31.28 ± 0.03 - 65.92 ± 
0.05%). The DPM of B. pilosa showed higher 
scavenging activity than that of FPM when using 
ABTS at different concentrations (0.01 to 1.0 
µg/mL) (Figure 4A). The highest scavenging 
activity was observed in DEE ranged from 71.52 ± 
0.01 to 90.62 ± 0.02%. In FPM, the highest 
scavenging activity was observed in FEE ranging 
from  46.29 ± 0.01  to  87.00 ± 0.00%  (Figure 4B). 
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Figure 3. DPPH radical scavenging activity (%) of DPM (A) and FPM (B) of B. pilosa extracts.  

 
 
The half-maximal inhibitory concentration (IC50) 
is a quantitative measure that shows the amount 
of a specific inhibitory substance required at 50% 
inhibition [37]. The crude extracts of B. pilosa had 
low IC50 values in DPPH and ABTS assays (Table 3). 
The DPM extracts showed lower IC50 values than 
that of FPM extracts. The lowest IC50 was 
observed in ethanol extract at the concentrations 

of 0.055 and 0.078 mg/mL in DPPH assay and 
0.057 and 0.155 mg/mL in ABTS assay for DPM 
and FPM, respectively.   
 
The anti-Mycobacterium activity of FPM and 
DPM of B. pilosa  
The well-diffusion assay initially determined the 
antimicrobial  activity  of  the  crude  extracts. The 
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Figure 4. ABTS radical scavenging activity (%) of DPM (A) and FPM (B) of B. pilosa extracts.  

 
 
inhibition zones ranged from 1.75 to 13.00 mm 
for FPM and DPM extracts. DAE observed the 
highest zone of inhibition against M. avium at 
14.00 ± 2.65 mm (Table 4). For M. smegmatis, the 
highest zone of inhibition was observed in DEE at 
13.00 ± 1.41 mm. Mycobacterium terrae showed 
the highest zone of inhibition with DAE extracts, 
which was 10.00 ± 1.41 mm. The highest zone of 
inhibition against Mycobacterium tuberculosis 

was 12.33 ± 3.79 mm and also in DAE. The crude 
hexane and water extracts displayed no anti-
Mycobacterium activity against all the tested 
strains. Rifampicin was used as a positive control. 
Minimum inhibitory concentration (MIC) of the 
crude extracts of B. pilosa ranged from 6.25 to 50 
mg/mL (Table 5). The lowest MIC value of 6.25 
mg/mL was with the acetone and ethanol 
extracts  against  all  the  test  strains.  The other  
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Table 4. Diameter of inhibition zones of plant extracts against mycobacterial strains at 100 mg/mL. 
 

Plant 
extracts 

Zones of inhibition (mm) 

M. avium M. smegmatis M. terrae M. tuberculosis 

FPM DPM FPM DPM FPM DPM FPM DPM 

Acetone 12.00±2.65 14.00±2.65 - 10.00±2.65 8.00±1.41 10.00±1.41 7.67±0.58 12.33±3.79 

Ethanol 9.33±1.53 10.00±2.00 2.75±1.10 13.00±1.41 8.50±0.71 9.5±0.71 11.33±1.53 11.00±2.65 

Methanol  11.00±1.73 12.00±1.73 - 5.50±2.21 7.00±2.83 9.50±0.71 4.33±1.15 7.67±2.50 

Water  - - - 2.25±1.06 1.75±0.35 - - - 

Hexane - - - - - - - - 

Rifampicin 31.3332.00±1.53 44.00±5.66 38.00±4.24 32.00±2.65 

Notes: Data represented the mean ± SD. 

 
 
Table 5. Minimum inhibitory concentration (mg/mL) of DPM and FPM of B. pilosa crude extracts against selected mycobacterial strains. 
 

Plant 
extracts 

Minimum inhibitory concentration (mg/mL) 

M. avium M. smegmatis M. terrae M. tuberculosis 

FPM DPM FPM DPM FPM DPM FPM DPM 

Acetone 12.5 6.25 12.5 6.25 6.25 6.25 12.5 6.25 

Ethanol 12.5 6.25 6.25 6.25 6.25 6.25 12.5 6.25 

Methanol 25 12.5 25 12.5 12.5 12.5 25 25 

Aqueous 25 25 50 25 12.5 12.5 25 50 

Hexane 50 50 50 50 50 50 50 50 

Rifampicin 1.562 3.125 1.562 6.25 

 
 
extracts, methanol, aqueous, and hexane, 
presented MIC values ≥ 12.5 mg/mL. It was also 
noted that DPM extracts showed lower MIC 
values than that of FPM extracts. 
 
HPLC profiles of B. pilosa extracts for the 
identification of phenolic compounds 
The HPLC profiles of FPM and DPM using 
methanol, acetone, and ethanol extracts were 
analyzed for 5 phenolic compounds with 
modifications [38]. The HPLC profiles were 
separated as (i) ascorbic acid, (ii) gallic acid, (iii) 
resorcinol, (iv) vanillin, and (v) benzoic acid with 
retention times (RT) of 2.521, 4.849, 10.880, 
18.186, and 39.823 minutes, respectively. 
Phenolic compounds in each chromatogram 
were shown in Figure 5 from AI to C2 with peaks 
showing the RT. The results of FME at 280 nm 
showed various constituents with different 
retention times (Figure 5: A1). The phenolic 
compounds were separated on FME at RTs of 
2.525, 3.792, 10.663, 17.592, and 40.109 
minutes, indicating the presence of ascorbic acid, 

gallic acid, resorcinol, vanillin, and benzoic acid 
(Figure 5: A1). The methanol extract from DME 
had higher amounts of phenolic compounds than 
that of FME with ascorbic acid, gallic acid, 
resorcinol, vanillin, and benzoic acid at 2.326, 
3.303, 10.384, 21.649, and 40.112 minutes, 
respectively (Figure 5: B1). The FEE of B. pilosa 
exhibited different constituents at various 
retention times. The prominent peaks were 
observed at 2.762, 10.642, 22.285, and 40.371 
minutes, which represented ascorbic acid, 
resorcinol, vanillin, and benzoic acid, respectively 
(Figure 5: B1). Similarly, DEE showed various 
constituents with different retention times. The 
highest peak in DEE was observed as ascorbic 
acid with an RT of 2.559 minutes (Figure 5: B2). 
Dried acetone extracts showed more phenolic 
compounds than that of FAE in peak areas. 
Chromatograms of 5 out of 5 phenolic 
compounds were observed in FAE and DAE at 
different RTs (Figure 5: C1 and C2). In FAE, the 
highest peak was observed at 3.401 min as gallic 
acid,   whereas   in   DAE,   the   highest   peak   was 
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Figure 5. HPLC of FME (A1), DME (A2), FEE (B1), DDE (B2), FAE (C1), and DAE (C2) showed the presence of different phenolic compounds. 1: ascorbic 
acid, 2: gallic acid, 3: resorcinol, 4: vanillin, 5: benzoic acid. 

 
 
observed at 2.546 mins as ascorbic acid. 
 
 

Discussion 
 
The percentage yield of B. pilosa crude extracts  

Different solvents produced different extraction 
yields from Bidens pilosa plant samples (Figure 
1), which was associated with the differences in 
the solvent polarities [39]. Methanol yielded 
6.7%, followed by water, ethanol, acetone, and 
hexane. Ethanol had the highest DPM yield, 
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followed by methanol, acetone, water, and 
hexane, demonstrating that solvent polarity 
affected extraction efficiency. The kind, 
biological activity, and yield of isolated chemicals 
depended on medicinal plant preparation for 
experimental research [40]. More yield means 
more material for downstream studies and fewer 
extractions, especially if the plant material is 
uncommon or endangered.   
  
Phytochemical screening of Bidens pilosa crude 
extracts  
1. Qualitative phytochemical analysis 
The crude extracts of B. pilosa contained 
flavonoids, phenols, tannins, alkaloids, 
terpenoids, saponins, glycosides, and steroids 
(Table 2), which were known to exhibit 
therapeutic and physiological activities. Extracts 
obtained from DPM showed more 
phytocompounds than that from FPM. 
Flavonoids were presented in moderation in all 
crude extracts (Table 2). Flavonoids have 
protective effects against cardiovascular diseases 
and have antimicrobial, anticancer, antivirus, 
anti-inflammatory, and anti-aging activities [41-
43]. Lechner et al. looked at the modulation of 
isoniazid (INH) susceptibility by flavonoids in 
Mycobacterium and found that the flavonoids 
decreased the MIC of INH [44]. They also 
suggested that the flavonoids' activity was 
related to antioxidant activity and inhibition of 
the mycobacterial efflux pumps. Tannins and 
phenols were presented in all crude extracts 
(Table 2). Tannins are phenolic compounds with 
a high molecular weight, soluble in water and 
alcohol, and act as primary antioxidants or free 
radical scavengers [45, 46]. Tannins showed 
antibacterial, antiviral, and antifungal activities 
[47]. The high tannin content reported in this 
work supported the traditional use of B. pilosa to 
treat various ailments. Biological properties such 
as anti-carcinogen, anti-inflammation, anti-
atherosclerosis, anti-aging, cardiovascular 
protection, endothelial function improvement, 
apoptosis, angiogenesis inhibition, and cell 
proliferation activities had been associated with 
phenolic compounds [48]. The DPM's water, 
acetone, and ethanol extracts showed the 

presence of cardiac glycosides, whereas, in FPM, 
they were presented only in methanol extracts 
(Table 2). Glycosides are utilized in treating 
congestive heart failure and cardiac arrhythmia 
and have been reported to lower blood pressure 
[49, 50]. Alkaloids were presented in the 
aqueous, acetone, and ethanol extracts and 
absented in the methanol and hexane crude 
extracts (Table 2). Alkaloids are effective for pain 
relief and have antispasmodic and antibacterial 
activities [51]. Saponins in the extracts (Table 3) 
possess anti-inflammatory activity, antidiabetic, 
anti-HIV, and anti-atherosclerotic properties [52, 
53]. Terpenoids have various biological activities 
such as antiparasitic, antiallergenic, anti-
inflammatory, antimalarial, and antibacterial 
properties [54-56], and play a vital role in the 
prevention and therapy of several diseases such 
as cancer [57]. All crude extracts lacked 
phlobatannins. These results agreed with the 
study by Owoyemi and Oladunmoye who found 
no phlobatannins in dried B. pilosa leaves 
extracted with ethanol and water [58]. 
Ezeonwumelu et al. found phlobatannins in B. 
pilosa aqueous leaf extracts [59]. Environmental 
factors, plant physiological and biosynthetic 
processes, and extraction solvent could explain 
the presence or lack of phytochemicals in 
different studies [60]. Plant extracts had 
antibacterial steroids [61]. Table 1 showed that B. 
pilosa crude extracts contained secondary 
metabolites like tannins, flavonoids, phenols, and 
alkaloids. 
 
2. Quantitative phytochemical analysis 
The DME and FME extracts had the most 
phenolics of 130.43 ± 0.01 and 113.76 ± 0.1 mg 
GAE/g, respectively (Table 3). Muchuweti et al. 
observed 1,102.797 ± 2.239 mg GAE/g TPC in B. 
pilosa methanol crude extracts [64]. Lee et al. 
found 538.1 mg GAE/g dry weight of phenolics in 
B. pilosa flowers using methanol [65]. In previous 
research, Singh et al. found 72 μg of GAE/mg of 
dry weight in fresh B. pilosa leaves [66], whereas 
Falowo et al. observed 75.9 ± 0.08 mg GAE/g dry 
weight in ethanol:water (70:30) leaves [67]. This 
study found significant phenolic content which 
could be attributed to plant material that was 
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gathered in summer. Jorgensen noted that light 
and radiation were necessary for phenol 
biosynthesis [68], which explained solar 
radiation's high phenolic compound production 
[69]. Light stimulates phenolic biosynthesis 
enzymes. Phenylalanine ammonia-lyase (PAL), a 
key enzyme in phenolic chemical production, 
rises under light [70, 71]. Compared to methanol, 
acetone extracted fewer phenolic compounds in 
B. pilosa, which might be due to the low solubility 
of polyphenols in acetone because of the 
hydrogen interactions between polyphenols and 
proteins [72]. Other researchers had alluded that 
because phenolic compounds included a 
hydroxyl group, they were more soluble in polar 
organic solvents. Hence various studies showed 
that methanol and acetone could extract high 
amounts of phenolic compounds, which 
influenced the biological activity of the extracts 
[73-76]. The extracts had more tannin than 
phenols or flavonoids. FPM extracts had the 
highest tannin concentration in FEE at 214.92 ± 
0.10 mg TAE/g, whereas DPM extracts had the 
highest in DEE at 588.84 ± 0.30 mg TAE/g. 
Mbokazi showed that B. pilosa methanolic seed 
and radicle extracts had tannin contents of 
416.36 ± 1.14 mg GAE/g and 69.05 ± 0.05 mg 
GAE/g dry weight, respectively [77]. In water 
extracts, B. pilosa's vegetative and reproductive 
sections had tannin contents of 1,030 ± 0.9436 
mg GAE/100 g and 827 ± 0.9428 mg GAE/100 g, 
respectively. Tannic acid concentrations in B. 
pilosa crude extracts have been shown to be high 
in several solvents. The plant uses tannins to 
defend against parasites and harsh climatic 
conditions. These tannins have immune-
modulating, cardio-protective, anticancer, 
antibacterial, antiviral, and anti-inflammatory 
activities [79, 80]. Thus, B. pilosa can be used in 
traditional medicine to cure microbial infections 
due to its tannic concentration. Ethanol has been 
identified as one of the most commonly used 
solvents for flavonoid extraction because of its 
capacity to solubilise moderately polar flavonoids 
with no environmental impact [81]. Flavonoids 
are generally extracted from plant sources using 
organic solvents, water, and combinations of 
various solvents [82]. The highest flavonoid 

content for the ethanol extracts from FPM was 
50.79 ± 1.00 mg QE/g and 51.23 ± 0.40 mg QE/g 
from DPM. The flavonoid content in ethanol 
extracts was almost similar to that of the 
methanol extracts. The TFC of the ethanolic 
extracts in this study was higher than that 
reported by Falowo et al. using ethanol:water 
(70:30) and equivalent to 14.9 ± 0.03 mg Ru/g 
[67], while Singh et al. used methanol on B. pilosa 
leaves and recorded 123.3 μg Quercetin per mg 
dry weight [66]. Flavonoids, the bioactive 
secondary metabolites of plants, provide flavour, 
color, and pharmacological and antioxidant 
activities [83, 84]. Flavonoids protect plants from 
UV radiation and scavenge free radicals [85]. 
Flavonoids have potent antioxidant and anti-
inflammatory in humans [86, 87]. Compared to 
other research, this study's variation in TPC, TTC, 
and TFC might be related to sugars, solvent, 
genetic variation [88], the process, and the length 
of the extraction [89]. 
  
Antioxidant activity of FPM and DPM of B. pilosa 
using TLC, DPPH, and ABTS  
Thin layer chromatography (TLC) is one of the 
techniques that has been applied for qualitative 
analysis of antioxidants in plant extracts [90, 91]. 
Different compounds of B. pilosa in FPM and 
DPM were indicated by the different colours 
(Figure 2) on the TLC plate sprayed with vanillin. 
The free radical scavenging activity of B. pilosa 
extracts was evaluated by spraying the TLC plate 
with a DPPH reagent. Figure 2 displayed the 
presence of compounds with antioxidant activity, 
indicated by yellow bands on the TLC plates 
against a purple background. The presence of 
antioxidants inhibited the production of free 
radicals, and the appearance of a yellow-white 
colour was often based on suppressing the 
accumulation of oxidized products [92]. DPPH 
and ABTS tests were employed to quantify the 
free radical scavenging activities of B. pilosa 
extracts [93]. Electron and hydrogen atom 
transport underlies the ABTS and DPPH reaction 
processes [94]. Bidens pilosa crude extracts had 
stronger antioxidant activity than that of ascorbic 
acid. Ethanol extracts scavenged best at 1 
mg/mL. Ethanol extracts' significant DPPH 
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scavenging activity corresponded with the 
intensity of antioxidant compounds (Figure 2). 
This study showed radical scavenging activities 
similar to those reported by Adedapo et al. using 
methanol, acetone, and water extracts of B. 
pilosa leaves [95] and Falowo et al. using ethanol-
water solution (7:3) extracts [67]. B. pilosa's 
significant scavenging activity demonstrated its 
proton-donating ability, which might make it a 
primary antioxidant. The lowest DPPH IC50 value 
was 0.055 mg/mL in the ethanol extract from 
DPM, which was lower than that reported by 
Singh et al. who reported a DPPH IC50 value of 
80.45 μg/mL in the methanolic extract of B. pilosa 
[66]. Adedapo et al. found a DPPH IC50 value of 
94.2 mg/mL in the leaves of B. pilosa [95]. The 
antioxidant activity of the essential oils from the 
leaves and flowers of B. pilosa had a DDPH IC50 of 
47 and 50 μg/mL, respectively [96]. This value 
was also slightly lower than that obtained in this 
study. In ABTS assay, the lowest IC50 was 
observed in the ethanol extract from DPM at 
0.057 mg/mL, which was lower than that 
reported by Singh et al. (171.6 μg/mL) [66] and 
Adedapo et al. (0.75 mg/mL) [95]. Strong 
antioxidant activity in ABTS and DPPH assays 
requires physiological action and oxidation of 
hydroxyl/superoxide radicals [65]. ABTS 
outperformed DPPH in radical scavenging. ABTS 
and DPPH tests react differently [97]. Lee et al. 
found ABTS to be more sensitive to antioxidants 
due to its quicker reaction kinetics and 
responsiveness [65]. ABTS is more soluble in both 
aqueous and organic solvent media, making it 
adaptable for measuring physiological fluids' 
hydrophilic and lipophilic antioxidant capabilities 
[98]. Stereo selectivity of radicals and extract 
solubility in different testing methods also affect 
extracts' ability to react and quench diverse 
radicals [99]. The tannins, phenols, and flavonoid 
levels in this study matched B. pilosa's high 
antioxidant levels as measured by DPPH and 
ABTS assays (Table 2). Phenolic substances such 
as simple phenolics, polyphenols, flavonoids, 
tannins, and phenolic terpenes, which have 
redox characteristics, are substantially related to 
medicinal plant antioxidant activity [100]. 
Phenols are aromatic rings with one or more 

hydroxyl substructures that allow extracts to 
scavenge free radicals [101]. Flavonoids are 
phenolic compounds having a wide range of 
antioxidant effects. Flavonoids with hydroxyl 
substituents on the nucleus prevent lipid 
peroxidation, but methoxy groups or glycogens 
decrease antioxidant action [102]. Antioxidative, 
anticarcinogenic, antibacterial, and anti-
inflammatory properties make plant phenolic 
substances valuable pharmacologically [103, 
104]. 
  
Anti-mycobacterial activity of FPM and DPM of 
B. pilosa using well diffusion and MIC assays 
The B. pilosa FPM and DPM extracts’ anti-
mycobacterial activities were assessed by using 
well diffusion and microtiter assays. The DAE and 
DEE inhibited the bacteria best in the well 
diffusion tests (Table 4), but hexane and water 
extracts did not. Secondary metabolites in B. 
pilosa were responsible for the inhibitory effect 
on Mycobacterium strains (Table 1). These 
secondary metabolites were responsible for 
inhibiting and repressing the growth of human 
bacterial pathogens through mechanisms that 
differed from existing antibiotics [105, 106]. For 
example, alkaloids target DNA topoisomerases 
and disrupt bacterial morphology and growth. 
Phenols, terpenoids, and saponins damage 
bacterial membranes [107, 108]. Flavonoids 
change membrane permeability and 
pathogenicity [109]. This emphasizes the usage 
of secondary metabolites of plant constituents as 
resources for exploring new antibiotics [110, 
111]. The specific molecular targets or 
mechanisms of action of B. pilosa on 
mycobacteria are still unknown. Further 
investigations are required to detect and 
quantify the active constituents of B. pilosa 
responsible for the inhibition of Mycobacterium 
strains. The minimum inhibitory concentration 
(MIC) of B. pilosa FPM and DPM ranged between 
6.25 and 50 mg/mL for the different solvents 
against M. avium, M. smegmatis, M. terrae, and 
M. tuberculosis. The DPM extract showed higher 
activity against these species, with the lowest 
MIC value of 6.25 mg/mL in DAE and DEE. Van 
Vuuren classified the anti-mycobacterial 
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activities of crude plant extracts using three 
different categories based on their MIC values, 
where 1 mg/mL or below was regarded as good, 
greater than 1 mg/mL and less than 10 mg/mL as 
moderate, and large than 10 mg/mL as poor 
activity [112]. Based on the above interpretation, 
the inhibitory activity of B. pilosa on 
mycobacterial growth was average (Table 6). This 
moderate anti-Mycobacterium activity observed 
in this study might be attributed to lipids such as 
mycolic acids and the bacteria's thicker, 
hydrophobic cell walls [113]. On the other hand, 
the higher sensitivity of Mycobacterium strains to 
DAE, DEE, and DME could be attributed to the 
fact that these polar solvents could dissolve 
various hydrophilic and lipophilic compounds 
leading to higher permeability of the lipid cell 
membranes and inhibited growth [114]. Hexane, 
which extracted non-polar chemicals, had no 
effect on the strains (Table 6). Non-polar 
chemicals are inactive against infections like 
Mycobacterium [115]. Although moderate 
activity was observed in this study, these extracts 
might still be of value because they could offer 
compounds with different binding sites to those 
of current drugs and possibly overcame the 
problem of antibiotic resistance. In general, 
medicinal plants are more active against Gram-
positive bacteria than Gram-negative bacteria, 
and the difference in susceptibility is related to 
structural differences in the cell walls [116]. This 
study's anti-mycobacterial activity matched that 
of Ajanaku et al. who tested the stem and root 
parts of B. pilosa using the proportion method on 
an L-J medium [117]. The study found that the 
hexane fraction of B. pilosa's root had weak 
activity against drug-susceptible M. tuberculosis 
(DS-MTB) and drug-resistant M. tuberculosis (DR-
MTB). The stem showed no activity against DS-
MTB and DR-MTB. Ajanaku et al. later examined 
the anti-mycobacterial properties of B. pilosa leaf 
extracts [118]. The hexane/methanol fraction 
showed good anti-tubercular activity against DS-
MTB, DR-MTB, and M. tuberculosis strain (H37Rv) 
with a MIC value of 6.25 mg/mL, while the other 
fractions were not active. Several plants with 
promising anti-tubercular activity have been 
described in previous investigations [119-122]. 

The asteraceae, lamiaceae, fabaceae, and 
apiaceae form part of the few plant families that 
have been studied [123]. Bidens pilosa belongs to 
asteraceae and showed anti-mycobacterial 
activity consistent with those of previously 
reported plant families. 
  
HPLC for identifying phenolic compounds 
present in B. pilosa 
HPLC is widely used to separate and quantify 
chemicals in complex materials such as plant 
extracts [124]. The phenolic compounds from 
fresh and dried B. pilosa were identified by using 
HPLC. The phenolic compounds were indicated 
by peaks (Figure 5) that showed the presence of 
ascorbic acid, gallic acid, resorcinol, vanillin, and 
benzoic acid. The DPM extracts of B. pilosa 
showed greater separation of compounds than 
that of FPM extracts. The DPM extracts of B. 
pilosa were more effective than FPM extracts 
based on the high amount of phytochemicals 
screened, high phenolic, flavonoid, and tannins 
content, high antioxidant activities, and lastly, 
low MIC values. This study showed that B. pilosa 
contained phytocompounds with antioxidant and 
anti-mycobacterial activity, which could be 
explored for new potential and effective drugs 
related to mycobacterium diseases. 
 
 

Conclusion 
 
This study demonstrated that the extraction 
process of Bidens pilosa greatly influenced the 
yield of bioactive compounds and their 
respective activities. DPM extracts of B. pilosa 
were more effective than FPM extracts, indicated 
by the higher amount of screened 
phytochemicals, elevated phenolic, flavonoid 
and tannins content, more substantial 
antioxidant activities, and lower MIC values. 
Therefore, the results of this study underscored 
the therapeutic potential of B. pilosa and the 
importance of extraction methods in harnessing 
this potential, leading the way for future research 
to enhance drug development, particularly for 
diseases related to mycobacterial infections. 
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