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The quality of silage has an important impact on the growth and health of dairy cattle. Aiming at its quality 
evaluation, this study investigated and constructed the quality evaluation model of silage based on principal 
component analysis (PCA). The evaluation index system of silage quality and safety was established by using the 
analytic hierarchy process, and then, the comprehensive quality evaluation model of silage based on PCA was 
established. The results showed that cumulative variance contribution rate of 12 retained principal component 
feature roots reached 87.63%. According to the pH values, the superior and inferior feed samples from Inner 
Mongolia, China accounted for 35% and 12.3%, respectively, while superior and inferior feed samples from Beijing, 
China accounted for 30.48% and 12.24%, respectively. Based on the contents of ammonia nitrogen and organic 
acids, 72% of samples from Inner Mongolia had an excellent quality grade, while 70% of samples from Beijing had 
an excellent quality grade. The comprehensive silage quality evaluation model based on PCA demonstrated 
certain feasibility and effectiveness and was simpler than the construction method and calculation of fuzzy 
comprehensive evaluation, which positively affected the quality evaluation of silage, and had a certain role in 
promoting the long-term development of animal husbandry and feed industry. 
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Introduction 
 
As living standards improved and health concepts 
changed, dairy products are becoming more 
popular among consumers, and food safety has 
always been an important issue concerning 
people's livelihood, while food safety of dairy 
products is inextricably linked to the safety of 
cow feeding. In addition to adequate lying down 
time, which is considered an important aspect of 
cow welfare, feed safety is crucial in their growth 
and health [1]. Silage has a high value of use in 
ruminant production and is an important source 
of feed for ruminants. Its primary challenge lies 
in preserving the feed during the fermentation 

process to achieve optimal nutritional and 
microbiological quality while minimizing 
fermentation losses, which is essential for 
maximizing its utility in ruminant nutrition [2, 3]. 
Silage is a class of feeds made from plant-based 
feeds with high moisture contents that are sealed 
and fermented, mainly for feeding ruminants. 
Ávila, et al. recognized that advancements in 
microbial identification techniques had 
significantly contributed to the understanding of 
the diversity of prokaryotes and eukaryotes in 
silage [4], which improved the understanding of 
how fermentation occurred in forage crops with 
diverse characteristics and how the fermentation 
process could be enhanced. Carvalho, et al. 
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concluded that the primary challenge in silage 
production was to preserve the feed while 
achieving high nutritional and microbial quality 
and minimizing fermentation losses. Many 
studies have focused on microbial additives, 
particularly lactic acid bacteria, which have been 
extensively studied and widely employed [5]. 
Zhao, et al. focused on addressing the existing 
knowledge gap regarding the relationship 
between yield and quality characteristics of silage 
maize, as well as the factors that influenced these 
parameters by collecting a comprehensive 
dataset with 5,663 observations from 196 
publications across the country. Additionally, 
they assessed the impact of various management 
practices and climatic factors on the yield and 
overall quality of silage maize [6]. Du, et al. 
addressed the utilization of natural woody plant 
resources as animal feed to reveal the microbial 
symbiotic network and fermentation mechanism 
involved in silage production by using advanced 
PacBio single-molecule real-time sequencing 
technology and accurately unveiled these 
processes and mechanisms. The results 
demonstrated that their findings could be 
effectively employed in conjunction with wheat 
bran to create high-quality silage for animal 
production purposes [7]. In addition, Xu, et al. 
employed a comprehensive multi-omics 
approach to investigate the regulation of 
bacterial microbiota and metabolome, as well as 
their interactions, in whole-crop maize silage 
systems by inoculating the silage with either 
Lactobacillus plantarum or Lactobacillus brucei 
heterofermentative strains to gain a deeper 
insight into the intricate biological processes 
involved in silage fermentation. This approach 
facilitated an enhanced understanding of the 
complex dynamics at play, shedding light on the 
mechanisms underlying the fermentation 
process in whole-crop maize silage systems [8]. 
Blajman, et al. explored the effectiveness of lactic 
acid bacteria as silage inoculants for Alfalfa to 
provide a quantitative summary of published 
studies to shed light on this still unclear aspect. 
The result revealed that the inoculation of lactic 
acid bacteria resulted in a reduction in the 
concentration of acetate, propionate, ethanol, 

and butyrate in the silage, as well as a decrease 
in the number of yeasts and molds presented in 
the inoculum and improving aerobic stability [9]. 
 
Principal component analysis (PCA) is a statistical 
technique that transforms correlated variables 
into uncorrelated ones using orthogonal 
transformations. PCA is also a fundamental 
mathematical technique that finds extensive 
practical applications in various disciplines. It 
serves as a powerful analysis method to extract 
valuable insights and patterns from complex 
datasets and has also been used for R-peak 
detection [10, 11]. Schreiber established public 
factor models and PCA and found that PCA 
reduced variables [12]. PCA has been applied 
widely in many scientific areas including human 
health [13] and environmental health [14]. Privé, 
et al. stated that PCA was commonly used in 
various genetic analyses for inferring ancestry 
and for control of population structure [15]. 
Gewers, et al. reported several theoretical and 
practical aspects of PCA including the basic 
principles of PCA, data normalization, 
visualization of results, outlier detection, PCA-
related methods, and other downscaling 
techniques, which were beneficial in helping 
researchers from the most diverse fields to use 
and interpret PCA [16]. Malik, et al. introduced an 
extension of the PCA transport framework by 
coupling PCA with Gaussian process regression in 
three-dimensional large eddy simulations to 
address the challenge of complexity in identifying 
low-dimensional flow patterns [17]. Another 
novel approach was introduced to enhance the 
predictability of PCA, which combined the 
forecasts from individual PCA subset regression 
models that utilized a subset of potential 
predictors to construct the PCA index to achieve 
improved predictive accuracy of PCA [18]. 
 
Although many previous studies used PCA for 
statistical analysis and affirmed the important 
value of silage for animal husbandry, there is still 
less research on comprehensive silage 
evaluation. This study established a silage quality 
and safety evaluation index system by using 
analytic hierarchy process (AHP), a systematic 
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decision-making approach that breaks down the 
key elements involved in decision making into 
hierarchical levels, to evaluate and assess both 
qualitative and quantitative levels [19]. The 
results of this study would have important 
practical application value and prospect for the 
dairy cattle breeding industry.  
 
 

Materials and Methods 
 

Construction of silage quality and safety 
evaluation index system  
The AHP was adopted in this study for system 
construction, which decomposed complex 
problems into several organized levels. The 
application steps of AHP were shown in Figure 1. 
 
 

Building a Hierarchy

Building a judgment matrix

Single sorting weight 

calculation

Consistency check

Total hierarchical sorting

Consistency check

On analysis

Adjusting the 

judgment matrix

Pass through

Pass through

Not satisfied

Not satisfied

 
 
Figure 1. Application steps of AHP. 

 
 
The consistent matrix method was used for two 
factors comparison and rating according to their 
importance. The matrix resulted by the 
comparison was judgment matrix as:  
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where ija  was the comparison result of the i 

factor compared with the j factor, and the matrix 
nature was shown in Equation (2). 
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The row vectors of the judgment matrix were 
geometrically averaged, and the eigenvectors 
were calculated as follows. 
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Each feature vector was then normalized as 
shown in Equation (4). 
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Then, the eigenvector was  TNWWWW ,...,, 21= . 

Matrix maximum eigenvalue was calculated as: 
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To avoid interference of other factors, the matrix 
consistency test was required as Equation (6). 
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where CI was deviation consistency index. RI was 
an average random consistency index, whose 
value was related to matrix order. CR was 
consistency ratio. When it was less than 0.1, 
matrix passed the one-time test, and vice versa.  
 
The hierarchical structure of the silage evaluation 
index system established by hierarchical analysis 
was shown in Figure 2. The silage evaluation was 
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targeted layer, and the characteristics of 
fermentation quality, nutritional quality, and 
safety were the criterion layer. The set of 
indicators under the criterion layer was the 
indicator layer. 
 
 

Quality and safety 

evaluation of Silage

Fermentation 

quality 

characteristics

Nutritional quality 

characteristics

Safety quality 

characteristics

Index Index Index

 
 
Figure 2. Hierarchical structure of silage evaluation index system. 

 
 
Nutritional quality evaluation indexes included 
acid detergent fiber (ADF), neutral detergent 
fiber (NDF), and water-soluble carbohydrates, 
etc. The content of NDF in silage was calculated 
below. 
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where m1 was the weight of the glass crucible. 
m2 was specimen’s weight. m3 was weight of 
glass crucible and NDF. The content of ADF in 
silage was calculated below. 
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where m3’ was the weight of the glass crucible 
and ADF. The safety characteristics of the feed 
then affected the animal's health and the 
coordination of physiological functions. The 
evaluation indexes of safety characteristics 
included natural toxic and harmful substances, 
exogenous toxic and harmful substances, and 
secondary toxic and harmful substances. 

Construction of PCA-based integrated silage 
quality evaluation model 
PCA was employed to evaluate silage 
comprehensive quality. A few integrated 
variables that reflected the main information 
with certain correlations were selected and 
transformed with more variables and different 
degrees of correlations into a new set of data 
with fewer and independent variables to search 
the linear relationship between the variables and 
simplify the data structure. The definition of PCA 
was shown in equation 9.  
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where Xp was the original variable indicator. Zm 

was the new variable indicator. m was less than 

or equal to p. ijl  was the loadings. Zi and Zj were 

uncorrelated with Z1 as the highest variance 
among all linear combinations of original variable 
indicators and Z2 represented those that were 
uncorrelated with Z1, and so on. Thus, PCA was 
determining the loadings of the original variables 
on the principal components. Assuming that 
there were n samples and each of which in turn 
had p variables, the original sample matrix 
constituted would be: 
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When p  was large, dimensionality reduction 

was required, which meant replacing more 
original variable indicators with less 
comprehensive indicators. The raw data required 
in the silage evaluation system were collected, 
and correlation coefficient matrix was calculated 
as follows. 
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where S was the variance of the sample. ijr  was 

the correlation coefficient between Xi and Xj. 
Contribution margin and cumulative contribution 
margin were calculated as: 
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where di was the contribution rate. i  was the 

matrix eigenvalues, and 0=− iR  . Dm was 

cumulative contribution rate. When Dm was close 
to 1, the first m indicator was selected as the 
principal component to replace variables, and 
then, principal component was evaluated 
comprehensively and calculated as: 
 

jmjm xaZ =

  

(13) 

 
where mja  was the feature vector. The silage 

evaluation system was huge. The traditional 
method was to determine each quality indicator 
of silage, add up the scores of each index of each 
silage sample to calculate the total score, and 
finally compare the quality of each silage sample, 
which was a tedious process with low efficiency 
and accuracy. The PCA-based silage quality and 
safety evaluation model constructed in this study 
consisted of three main steps (Figure 3), which 
included (1) the characteristic roots and 
contribution rates in PCA to select principal 
components, which retained the top 12 
components with an 85% cumulative variance 
contribution rate or more by run results. Principal 
components were formalized linear 
combinations, and the magnitude of loading 
values of each indicator trait in the principal 
components reflected the importance of each 
indicator trait in the principal components; (2) 
the integrated principal component scores of 
each silage sample were calculated based on the 

functional expressions of the first 12 principal 
components, and then, the integrated quality 
evaluation of silage was carried out based on the 
principal component scores; (3) the integrated 
quality of silage quality and safety was clustered 
and analyzed  based on the principal components 
that could express 87.62% of the integrated 
characteristics of the original index system traits, 
and the basic situation of quality and safety of 
different silages was analyzed.  
 
 

Start 

End 

Calculate cumulative 

variance contribution rate

Retain the top 12 principal components 

with a contribution rate greater than 85%

Calculate comprehensive score

Cluster analysis of comprehensive quality based 

on principal components that can express 

87.62% of comprehensive features

 
 
Figure 3. Flow chart of silage quality and safety assessment model 
based on PCA. 

 
 
Applications of PCA-based silage quality and 
safety evaluation system  
Total 200 silage samples with 100 from Beijing 
(Houderui Trading Co., Ltd., Beijing, China) and 
100 from Inner Mongolia (Hulunbuir Mengcheng 
Qingcang Feed Production Co., Ltd., Hulunbuir, 
Inner Mongolia, China) were evaluated and 
compared to each other by using the PCA-based 
silage quality and safety evaluation system 
developed in this study. The correlations 
between the results were then investigated. 
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Table 1. Silage quality and safety index screening. 
 

Number Index Number Index 

1 Smell 15 Acid detergent fiber (ADF) 
2 Texture 16 Crude ash 
3 Color 17 Calcium 
4 pH 18 Phosphorus 
5 Lactic acid 19 Lead 
6 Acetic Acid 20 Arsenic 
7 Propionic Acid 21 Mercury 
8 Butyrate 22 Chromium 
9 Ammoniacal nitrogen 23 Cadmium 

10 Dry matter 24 Organophosphorus 
11 Crude protein 25 Nitrate 
12 Crude fat 26 Nitrite 
13 Water soluble carbohydrate 27 Aspergillus flavus B1 
14 neutral detergent fiber (NDF) 28 Melamine 

 
 

Results and discussion 
 
Screening and analysis of silage evaluation 
indicators  
To establish silage quality and safety evaluation 
system, this study used frequency statistics 
method analyzing existing domestic and 
international related reports and literatures to 
select the indicators with high frequency of use 
and high relevance. The relevant theoretical 
analyses were then conducted on each selected 
indicator for further confirmation. The expert 
consultation was performed to solicit 
professional opinions and adjust the preliminary 
selected evaluation indicators. The first-round 
screening of silage quality and safety indicators 
included 34 characteristics including 11 
fermentation quality indicators, 10 nutritional 
quality indicators, and 13 safety and quality 
rating indicators. A number of experts in silage 
quality testing were invited to hold a workshop 
for the second round of screening, and finally 4 
new indicators were added, while 10 indicators 
were deleted, resulting in a collection of 28 
indicators (Table 1). 
 
The silage fermentation quality and nutritional 
characteristics 
The comprehensive quality of silage feed is 
influenced by fermentation quality and 

nutritional characteristics. After clarifying the 
silage evaluation indicators, the silage 
comprehensive characteristics could be further 
scientifically and reasonably evaluated through 
mathematical methods [20]. The evaluation 
indicators for silage fermentation quality include 
pH value, volatile fatty acids, and liquid ammonia. 
This study applied sensory evaluation methods to 
evaluate silage feed samples in three aspects 
including smell, color, and texture. The results 
showed that 52.6% of silage samples from Inner 
Mongolia were rated as Grade 1 with only 0.01% 
samples were rated as Grade 4. Among the feed 
samples from Beijing, 51.08% were rated as first 
grade, while only 0.01% were rated as fourth 
grade (Figure 4). Therefore, according to the 
results of sensory evaluation, the fermentation 
qualities of silages from these two regions were 
all good. Silage pH is an indicator reflecting the 
degree of decomposition of silage raw materials 
and the effect of nutrient preservation. It is also 
an important indicator for silage quality 
evaluation. The silage qualities were assessed as 
excellent, good, average, and inferior with pH 
values less than 4, between 4.1-4.3, between 4.4-
5, and greater than 5, respectively. In this study, 
silage samples from Inner Mongolia consisted of 
35% excellent and 12.3% inferior, while silage 
samples from Beijing were 30.48% excellent and 
12.24% inferior (Figure 5). Therefore, there was a 
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Figure 4. The fermentation qualities of silage samples from Inner Mongolia (a) and Beijing (b) based on sensory evaluation. 
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Figure 5. The fermentation qualities of silage samples from Inner Mongolia (a) and Beijing (b) based on the pH values. 
 
 
significant difference between the feed grade 
evaluated based on the pH value and the sensory 
evaluation. In addition, the ammoniacal nitrogen 
and organic acids produced in the fermentation 
process of the above samples were also 
evaluated comprehensively. The silage samples 
from Inner Mongolia demonstrated 72% 
excellent and 1% inferior quality, while the feed 
samples from Beijing showed 70% excellent and 
1% inferior quality (Figure 6), indicating that the 
compositions of ammonia nitrogen and organic 
acid of silages in these two different regions were 
reasonable, and the decompositions of protein 
and amino acid were not serious. Due to the 
significant differences in the evaluation results of 
the silage fermentation quality from different 
methods, a correlation analysis was conducted 

on the different evaluation methods of silage 
fermentation quality. The results showed that 
there was no correlation between sensory 
evaluation and the other two methods. The 
correlation between fermentation quality score 
and sensory evaluation was 0.5385, which was 
not significant (P > 0.05), and there was also no 
correlation with pH value. The correlation 
between pH value and fermentation quality score 
was 0.0001, with an extremely significant 
correlation (P < 0.001). The correlation with 
sensory score was 0.0305, with a significant 
correlation (P < 0.05). 
 
Silage feed is made from plant feed that contains 
a large amount of water and is sealed and 
fermented. Therefore, attention has been paid to  
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Figure 6. The fermentation qualities of silage samples from Inner Mongolia (a) and Beijing (b) based on the ammoniacal nitrogen and organic acids 
production in the fermentation process. 

 
 
Table 2. Variance and cumulative variance contribution rate of 12 principal components. 
 

Number Eigenvalue Variance contribution rate Cumulative variance contribution rate 

1 4.5213 0.2263 0.2265 
2 2.4007 0.1202 0.3467 
3 1.8019 0.0899 0.4367 
4 1.4196 0.0698 0.5071 
5 1.3099 0.0662 0.5718 
6 1.2485 0.0631 0.6354 
7 1.0257 0.0504 0.6859 
8 0.9598 0.0497 0.7336 
9 0.8194 0.0406 0.7748 

10 0.7083 0.0361 0.8098 
11 0.6798 0.0337 0.8451 
12 0.6299 0.0322 0.8759 

 
 
the determination of fermentation quality, which 
results in certain limitations in the 
comprehensive silage quality evaluation. The 
silage fermentation quality not only directly 
reflects the preservation effect, but also has a 
great correlation with its nutritional value. 
Fermented silage can better maintain the 
nutritional composition of green forage, but it 
can also improve the palatability and feeding 
efficiency of forage and straw, thereby improving 
the utilization efficiency of livestock. Among 
fermentation quality, nutritional quality and 
safety quality, fermentation quality is the 
predominant factor being used to assess overall 
silage quality, while nutritional quality is the 
foundation of silage feed quality, which is the 
basic guarantee for livestock growth, 

development, and production performance. 
Along with fermentation and safety quality, it 
affects the value of silage feed feeding. 
 
Verification of the PCA-based integrated silage 
quality evaluation system  
The silage from Beijing was selected to verify the 
application effect of PCA-based silage 
comprehensive quality evaluation system. The 
results of the top 12 principal components whose 
cumulative variance contributions were above 
85% were shown in Table 2. The magnitude of the 
loading values of each indicator trait in the 
principal components was shown in Table 3, 
which reflected the importance of each indicator 
trait in the principal components. Among them, 
principal  components  1,  2,  3,  4,  and  6  mainly 



Journal of Biotech Research [ISSN: 1944-3285] 2023; 15:174-184 

 

182 

 

Table 3. Eigenvector of correlation matrix of silage quality and safety traits. 
 

Index 1 2 3 4 5 6 

Sensory score -0.2187 0.1471 -0.2203 0.2292 -0.0637 0.3068 
Propionic acid 0.2294 0.1890 -0.1840 -0.0285 0.1429 0.1301 

Butyric acid 0.2479 0.2431 -0.0972 0.0042 -0.0607 -0.0829 
Volatile base nitrogen /Total nitrogen 0.1995 0.2507 -0.1639 0.1407 -0.1877 -0.2302 

Dry matter 0.0692 -0.2238 0.3849 0.3929 -0.1058 -0.0899 
Crude protein -0.1543 0.4053 0.3186 -0.0391 0.0859 -0.0017 

Crude fat -0.0485 0.1469 0.1250 -0.2994 -0.0462 0.6142 
Neutral detergent fiber 0.2931 -0.3375 -0.0716 0.2107 -0.0763 -0.0203 

Acid detergent fiber 0.3644 -0.2367 0.0441 0.2582 0.0348 -0.2148 
Lead -0.1091 0.2031 -0.1191 0.2471 0.4558 0.0691 

Arsenic 0.0890 0.0853 -0.1245 -0.1903 0.4860 -0.3304 
Metabolic energy -0.0672 -0.0719 0.0733 0.2348 -0.4957 -0.1196 

Index 7 8 9 10 11 12 

Sensory score 0.0571 -0.1059 0.5041 -0.2730 0.0148 0.0791 
Propionic acid 0.0652 0.5419 0.1018 -0.1871 0.2556 -0.1842 

Butyric acid 0.4699 0.1071 -0.0579 0.3662 -0.2341 -0.3163 
Volatile base nitrogen /Total nitrogen 0.1557 -0.4580 -0.2278 0.1903 0.2796 0.1746 

Dry matter 0.2983 0.1451 -0.0261 -0.3369 -0.0095 0.1897 
Crude protein -0.1720 -0.0368 -0.0515 0.1072 -0.3316 0.2573 

Crude fat 0.0937 -0.0392 0.1459 0.3558 0.2958 -0.0652 
Neutral detergent fiber (NDF) 0.0458 0.0287 0.1696 0.0199 -0.3671 -0.0820 

Acid detergent fiber (ADF) -0.1330 0.0479 -0.1038 -0.0079 -0.0965 -0.0842 
Lead 0.3622 0.2601 -0.1399 -0.0112 -0.1780 0.4497 

Arsenic -0.4645 0.0597 0.2760 0.2668 0.0491 -0.0998 
Metabolic energy -0.1879 0.5271 0.0847 0.4041 0.0159 0.3541 
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Figure 7. Sample comprehensive scores. 

 
 
reflected the nutritional quality traits, while 
principal components 7, 8, 9, and 10 mainly 
reflected the fermentation quality traits and 
principal components 5, 11, and 12 mainly 

reflected the safety quality traits. In addition, the 
correlation coefficients of the 12 retained 
principal components with NDF, ADF, and 
melamine were large. Since cumulative variance 
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contribution of characteristic roots of principal 
components retained in this study reached 
87.63%, which could represent most of the 
information in the evaluation index system, the 
retained principal components were used for 
further analysis. The composite score of the 
principal components was calculated separately 
for each silage sample based on the functional 
expression of the principal components. The 
quality and safety of the five silages from Beijing 
were compared according to their scores of the 
composite quality, which was then compared 
with scores of fuzzy comprehensive evaluation 
method. The composite scores obtained from 
those two different methods were shown in 
Figure 7. There was a slight difference in the 
scores of the five samples obtained by the two 
methods, and the scores of the samples based on 
the PCA method were samples 3, 4, 5, 2, and 1 in 
descending order, which were consistent with 
the results obtained by fuzzy comprehensive 
evaluation method. However, the accuracy might 
be affected by the selection of factors and weight 
distribution, and the judgment matrix 
construction method was more complicated, and 
the calculation was more cumbersome. 
Therefore, the comprehensive quality evaluation 
model of silage based on PCA had certain 
feasibility and validity. 
 
 

Conclusion 
 
With the changes in health concepts and dietary 
habits, dairy products are becoming increasingly 
popular among consumers. Silage feed is one of 
the main feed materials for ruminants. Its quality 
not only affects the development of the feed 
industry itself, but also affects the growth and 
health status of livestock, as well as the quality of 
corresponding dairy and meat products. 
Therefore, establishing a silage feed system that 
meets international standards is crucial for the 
long-term development of the feed industry and 
animal husbandry. However, establishing an 
evaluation index system for the quality and 
safety of silage feed is an extremely complex 
process, which must comply with both objective 

reality and scientific statistical principles. It 
follows the principles of hierarchy and 
systematicity, integrity and correlation, 
applicability and universality, as well as the 
combination of qualitative and quantitative 
analysis. This study established an evaluation 
index system for the quality and safety of silage 
feed, and a comprehensive evaluation model for 
silage quality based on PCA to more accurately 
evaluate the quality and safety of silage feed. The 
model constructed by this study demonstrated a 
certain feasibility and validity. However, the 
samples selected for the research experiments 
were still not rich enough, which might affect the 
practical application of the model. Therefore, 
more silage sample data need to be collected to 
prove the effectiveness of the model in silage 
quality evaluation, so that it can be better applied 
to the actual feed production process and 
improve the safety of dairy cattle feeding. 
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