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With the development of urban economy and the improvement of people's living standard, environmental 
problems have become the focus of people's attention. Among them, air pollution not only restricts the speed of 
economic development, but also affects the health level of the people. This study used the global spatial 
autocorrelation method, spatial descriptive statistics, and other index methods to explore the changing trend of 
spatial and temporal characteristics and influencing factors of urban air pollutants. The results showed that the 
air pollutions of PM10, SO2, NO2, and air pollution index (API) were mainly concentrated in spring and winter, and 
there was an obvious "weekend effect." Pollutants had a certain spatial dependence, and the pollution center 
gradually shrank from the northwest to the northeast of China. Population density and urban economic level had 
a negative relationship with API and main pollutants, while economic level and API had positive correlation. The 
results of this study provided references for scientifically coping with the characteristics of seasonal pollution 
transformation and strengthened the joint prevention and control mechanism of air pollution by exploring the 
change rules and influencing factors of air pollutants, so as to form a green and coordinated development pattern. 
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Introduction 
 
The continuous development of urbanization has 
led to rapid economic growth and promoted the 
process of industrialization, and the quality of 
people's life has been continuously improved 
under this background. In addition, the increase 
in per capita disposable income makes people's 
demand for cars gradually rise. As a result, the 
number of cars in the city shows a rising trend. 
However, vehicle exhaust emissions contain 
more pollutants that harm urban air quality, 
including sulfur dioxide (SO2), nitrogen dioxide 
(NO2), and inhalable particulate matter (PM10). 
The increasing content of these air pollutants 
makes the environmental health of the city face 

a greater challenge. In addition, environmental 
pollution is also one of the realistic constraints in 
the decisive stage of building a moderately 
prosperous society in an all-round way [1-3]. 
Therefore, affected by factors such as the surge 
of population and the improvement of economic 
development level, the problem of air pollution 
in Chinese cities has become increasingly serious, 
and the negative environmental effects caused 
by it are relatively obvious [4, 5].  
 
Studies related to the spatial and temporal 
distribution of air pollution mainly use 
multidisciplinary methods such as mathematics, 
geography, meteorology, etc. to carefully analyze 
the concentration value or comprehensive index 
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of pollutants in the whole region or local region 
on different time scales to obtain its time change 
trend and spatial distribution characteristics in 
the corresponding period. The research results of 
air pollution provide a scientific and reliable basis 
for the formulation of air pollution control 
measures, which has attracted more scholars' 
attention. Geng et al. developed a near-real-time 
air pollution database to better understand the 
spatial and temporal distribution of air pollution. 
The database combined information from 
multiple data sources such as ground 
observations, satellite aerosol optical depth, 
meteorological fields, and land use data. The 
database constructed could track the daily 
changes of PM in real time, which was more 
convenient for the study of the spatial and 
temporal distribution of air pollution [6]. Gui et 
al. took dust pollutants as the research object 
and used Euler-Lagrange model to study the 
motion law and space-time distribution of dust. 
The results showed that the wind curtain jet 
changed with the development of time and space 
and had a significant impact on the surrounding 
flow field. This study had effectively discussed 
the spatial and temporal distribution law of dust 
air pollutants [7]. Further, Kerimray et al. 
investigated the influence of meteorological 
conditions on air pollutant diffusion in highly 
polluted industrial and mining cities by using 
inverse distance weighted interpolation method. 
In addition, by combining wind speed, wind 
direction and precipitation data, the pollution 
process, temporal distribution, spatial 
distribution, and meteorological conditions of 
heavy air pollution in the studied area were 
discussed, which provided new insights into 
mitigating air pollution in industrial cities [8]. 
Moreover, Ma et al. found that the air pollution 
model based on the traditional land regression 
model had the limitation of complex operation 
and proposed a LUR modeling and pollution 
mapping software called PyLUR, which included 
potential predictor variable generation, 
regression modeling, model verification module, 
and prediction mapping, and could efficiently 
generate pollutant concentration maps [9]. Liu et 
al. analyzed the temporal and spatial distribution 

of ozone and its impact on human health by using 
a variety of cross-scientific methods. The results 
showed that the spatial distribution of ozone was 
mainly in the northwest to southeast direction, 
showing the characteristics of spatial 
autocorrelation with the time characteristics of 
"high in summer and winter, low in spring and 
autumn” [10]. The study of air pollution 
influencing factors focuses on the influence of air 
pollution on air quality in time, space, and region. 
Many studies have explored the relationship 
between air pollution and environmental factors 
from the aspects of nature and social economy to 
provide evidence for air pollution prevention and 
control. From the perspective of environmental 
risk, Du et al. adopted spatial statistical method 
and geographical regression weighting model to 
analyze the spatial characteristics of risks and 
assess the key areas where risks occurred 
respectively [11]. Based on China's annual 
atmospheric monitoring data, Bai et al. used 
ArcGIS and principal component analysis to 
monitor the atmospheric environment data of a 
certain province and found that heavy coal 
burning and vehicle emissions in winter led to 
severe regional pollution. The pollutants’ time 
distribution was winter greater than summer, 
while the spatial distribution showed a 
decreasing trend from northwest to southeast 
[12]. In addition, Yang et al. studied the 
relationship between air quality, air pollutant 
characteristics, and meteorological factors in 
Beijing and Tianjin, China and found that most 
pollutants were positively correlated with 
temperature, while ozone was generally only 
positively correlated with temperature in 
autumn, and NO2 was negatively correlated with 
temperature in autumn. Among the pollutants, 
PM10, PM2.5, and CO had greater impacts on air 
quality index (AQI) [13]. To explore the 
influencing factors of air pollutants, Wang et al. 
adopted nonlinear Grann causality test 
technology to identify the spatial correlation of 
air pollution. In addition, based on relational 
data, a secondary assignment program was 
applied to discuss the factors affecting the spatial 
correlation of haze pollution in North China. 
Regression analysis showed that geographical 



Journal of Biotech Research [ISSN: 1944-3285] 2023; 15:253-265 

 

255 

 

distance matrix, economic development level, 
and environmental regulation level could affect 
urban haze pollution [14]. A roadside monitoring 
experiment to explore the relationship between 
urban traffic and air pollution was conducted by 
Zhang et al, which studied the rule and key 
influencing factors of air pollutants emitted by 
urban traffic. The results showed that the mass 
concentration of air pollutants in various districts 
of the city was mainly affected by motor vehicle 
emissions. and illumination, wind speed and 
direction could significantly affect the diffusion of 
air pollutants [15]. 
 
The increase in population density, competition 
for energy consumption and the increase in the 
number of motor vehicles are particularly 
evident in large cities and have caused great 
changes in the types of air pollution sources and 
the concentration levels of pollutants. Nitrogen 
oxides and hydrocarbons are closely related to 
reduced visibility and frequent haze weather 
[16], while PM10, SO2, NO2, and other pollutants 
will cause damage to human tissues and organs 
and increase the possibility of viral infection [17]. 
The study on the spatial-temporal evolution 
characteristics of urban air pollution can provide 
theoretical support for the development of urban 
air pollution prevention and control work. It can 
also provide a scientific basis for the formulation 
of further air pollution prevention and control 
strategies. Although many studies have paid 
more attention to the spatial and temporal 
distribution and influencing factors of air 
pollution, there are still limitations such as the 
selection of air pollutants was not rich enough, 
the index of measuring air pollutants had strong 
subjectivity, and the research period needed to 
be further extended. Therefore, this study adopts 
global spatial autocorrelation method, spatial 
descriptive statistics, and other index methods to 
explore the changing trend and influencing 
factors of spatial and temporal characteristics of 
urban air pollutants. The results of this study 
could be helpful in formulating appropriate 
improvement strategies to further accelerate 
economic development and improve people's life 
happiness index.  

Materials and methods 
 
Data resource and processing  
The data of air pollution index (API) and major 
pollutants from 329 prefecture level and above 
cities in China from 2020 to 2022 were included 
in this study. The hourly monitoring data of all 
APIs were obtained from the China 
Environmental Monitoring Station, which were 
organized and summarized on a small to large 
time scale. The geographic information system 
software, ArcGis 10.8 (Esri, Redlands, California, 
USA) was employed to statistically organize the 
changes in API values for 2020 and 2021 to 
understand the spatial distribution and 
movement of API and major air pollutants over 
the course of a year. A total of 9 environmental 
air quality monitoring stations were set up by The 
Environmental Protection Bureau of Nanchang 
City (Nanchang, Jiangxi, China). The daily hourly 
air quality data from those 9 monitoring stations 
in 2017 was retrieved from the website of the 
Environmental Protection Department of Jiangxi, 
China. The single indicator data including hourly 
data from the Chinese New Year's Eve, the first 
day of the lunar new year, and the second 
solstice (spring equinox, summer solstice, 
autumn equinox, and winter solstice) of 
Nanchang City from 2016 to 2022, as well as daily 
hourly pollution and meteorological data 
including temperature, humidity, and wind speed 
from April, July, October 2017, and January 2018 
were obtained from the China Air Quality Online 
Monitoring and Analysis Platform. The daily API, 
quality level, and primary pollutant data of 
Nanchang City from 2016 to 2022 were obtained 
from the Data Center of the Ministry of 
Environmental Protection of China. The 
meteorological data used in the backward 
trajectory model was from Global Data 
Assimilation System (GDAS) (National Centers for 
Environmental Information, Asheville, North 
Carolina, USA). 
 
To explore the socio-economic factors of urban 
air pollution, the constructed model was applied 
to analyze the data and explain the variables. 
Subsequently, an assessment model of 
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environmental impact was generated by using 
the explanatory variables in the STIRPAT 
theoretical model. The control variables of the 
model were the total commonly used population, 
regional per capita GDP, nighttime lighting value, 
and urban technological level, which were 
incorporated into the formula model for 
regression analysis. 
 
Spatial and temporal distribution mode of urban 
air pollutants 
API implements dimensionless number 
transformation for air quality evaluation in the 
form of hierarchical representation, which can 
effectively express the content and 
concentration of common air pollutants in 
numerical form as shown in equation 1 [18]. 
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where ,,i i jI I  was the i -th pollutant and its sub-

index at the turning point of 1j + . iC  was the 

concentration value of pollutant i -th unit 

content. , 1i jC +  was the concentration limit of 

pollutant i  at the turning point 1j + . There was 

a certain degree of correlation between things, 
and things that were close to each other having a 
higher degree of correlation. Accordingly, there 
might also be a certain correlation between air 
pollution in different regions [19]. Therefore, the 
global spatial autocorrelation method (Moran's I 
index) was introduced to quantitatively describe 
the spatial similarity and correlation of API as 
shown in equation 2. 
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where ijw  was the spatial weight matrix of space 

unit i  and research unit j  within the research 

scope. ix  was the observed value of unit i . x  

was the average of the observed values of each 
unit. n  was the number of subregions of the 
study area. The range of Moran's I index was 

between -1 and 1. AQI spatial similarity increased 
when Moran's I index approached 1. When 
Moran's I index was close to 0, the spatial 
distribution of AQI was random. As Moran's I 
index tended to -1, AQI became more spatially 
different. When other conditions were the same, 
the difference of Moran's I index was related to 
the difference of spatial weighting matrix. While 
considering the spillover effect of air pollution, 
the spatial change characteristics of data 
sampling points were explored, and a regression 
model was built to analyze the regional diffusion 
degree and influencing factors of air pollution in 
terms of geographical characteristics to grasp the 
spatial evolution law of pollutants more 
comprehensively. Its calculation equation was 
shown below. 
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where ( ),i iv  was the longitude and latitude 

coordinates of the city i . ( ),i ia v  was the 

constant term of city i . 1, 2, 3   denoted 

undetermined values for the assessment of 
socio-economic levels, population constants, and 

urban urbanization levels. ( ),k i iv   was the city i  

estimates the parameter value of variable k . ikx  

was the k -th explanatory variable in city i . ie  

was the residual term. 
 
Construction of urban pollution influencing 
factors analysis model 
The environmental Kuznets curve examines the 
relationship between per capita curve and 
environmental pollution. With the development 
of economy, environmental pollution continues 
to increase so that, when the node value is 
crossed, economic growth will reduce the 
generation of environmental pollution [20]. 
However, with the increase of population and the 
improvement of scientific and technological 
level, it is difficult to judge the air pollution 
problem in environmental problems and the 
change trend of the increase and decrease of air 
pollution indicators [21]. Therefore, based on the 
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STIRPAT model, this study proposed a new 
benchmark model as equation 4. 
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where Pollution  was the environmental pollution 
index. 0  was the invariant characteristics of the 
city during the sample observation period. pop  
denoted the total population of the city at the 

end of the year. gdp  denoted the GDP per 

capita measured at prices for that year. tec  
denoted the level of technology. i  indicated 

urban fixed effects. t  represented a time-fixed 

effect. it  was a random disturbance term. i  
indicated the city. t  indicated the year. X  was a 
set of related control variables. sec  denoted the 

industrial structure. Meanwhile, 2gdp and 2pop  

were introduced to further explore whether 
there was an "N" type relationship between 
economic growth and air pollution environment. 
In addition, the least squares model and ArcGis 
software were combined to further analyze the 
correlation among factors by using equation 5. 
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where I, P, A, T represented the environmental 
factors that affected the degree of air pollution, 
the population macro factors, the accumulation 
of social wealth, and the level of technology that 
affected the level of urbanization. a  was a 
constant value. b, c, d were the coefficients to be 
estimated. Cons  denoted the built-up area of the 
city. FC  was the urban transport conditions. 
 
The least square regression model takes the 
spatial independence of multiple variables as the 
basic assumption. However, due to the action of 
natural factors such as air circulation, air 
pollution would spread to the surrounding area. 
In other words, the degree of local air pollution 
was not only related to local economic 
conditions, but also related to the surrounding 
environment. Therefore, in the process of 

establishing the spatial econometrics model, the 
influence of spatial lag must be considered. Since 
the spatial delay model could consider the spatial 
dependence of air pollution, a spatial lag model 
was selected for numerical simulation of the 
spatial spillover effect of air pollution with its 
specific function form shown below. 
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where W was the spatial weight matrix of n×n. n 
was the number of cities. WLnAPI  was the spatial 
lag term of the dependent variable.   was the 
autoregressive coefficient in the spatial lag 
model. If   was significant, the local air pollution 
was affected by air pollution in the surrounding 
area, while   > 0 indicated that an increase in 
ambient air pollution would lead to an increase in 
local air pollution. Ordinary least squares 
regression ignores spatial heterogeneity. To 
improve this limitation, Geographically Weighted 
Regression (GWR) model was proposed in this 
study to consider the effect of spatial 
heterogeneity. Its specific function expression 
was shown in equation 7. 
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where ( ),i iv  represented the longitude and 

latitude coordinates of the city i . ( ),i ia v  was a 

constant term representing a city i . 1 2 3, ,    

indicated social affluence, demographic factors, 

and level of technology. ( ),k i iv   denoted the 

parameter to be estimated for explanatory 

variable k of city i . ikx  was the k -th 

explanatory variable representing the i  city. ie  

represented the residual term of city i . In this 

study, Gaussian function was selected for 
regression of spatial weight function, and its 
specific expression was shown in equation 8. 
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Figure 1. Distribution of API time coefficients for cities in China by quarter and month from 2020 to 2022. 

 
 

where   represented the standard normal 

density function.   represented the standard 

deviation of the distance vector id .   was the 

attenuation coefficient. 
 

 
Results and discussion 

 
Space-time characteristics of PM10, SO2, NO2, 
and API 
The maximum and minimum urban API values of 
104.2 and 67 were shown in winter and summer 
of 2020, respectively. Compared with 2020, the 
API values in fall and winter of 2021 decrease by 
45% and 16.67%, respectively. The values of the 
API index in 2022 had increased to varying 
degrees with the winter value rising by 7. The 
highest mean value in winter was 89.63 while 
the lowest in summer was 52.43 (Figure 1a). The 
monthly mean value of API showed a trend of 
first decreasing and then increasing with 
September as the turning point of value change 
for 2020, while the mid to late July and October 
for 2021 and 2022, respectively (Figure 1b).  
Influenced by the special epidemic in the second 
half of 2021 and the changes in living habits, 
vegetation, and precipitation brought by 
seasonal changes, the difference between the 
numerical changes in 2022 and 2021 was small, 

which changed the concentration of air pollution 
to a certain extent. To further understand the 
change characteristics of API and major 
pollutants, PM10, SO2, NO2, and API were 
analyzed, which all demonstrated a "V" shape 
with the peaks all appeared in January-March 
and October-December, indicating serious 
pollution in winter (Figure 2). The concentrations 
of PM10 and API values were mostly above 50 
µg/m³. The maximum value of SO2 occurred 
between 8 am and 11 am with the 
concentrations of SO2 and NO2 were lower than 
50 µg/m³, while the concentrations of PM10 and 
API showed an upward trend after 2 am and 8 
PM, indicating that the increase in travel volume 
after evening aggravated the level of air 
pollution and increased the number of inhalable 
particles (Figure 2b). Figures 2c and 2d showed 
that there was an obvious "weekend effect" in 
the moment level of pollutants. To grasp the 
spatial distribution and movement status of API 
and major air pollutants in one year, the ArcGis 
tool was used to statistically organize the 
changes of API values in 2020 and 2021 (Figure 
3). The results showed that most parts of the 
country were in a good level of air quality in 2021 
compared to 2020. The pollution level in the 
southwest part of the Shandong Peninsula urban 
agglomeration and some parts of Hebei Province 
had improved, and the pollution level in Kashgar 
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Figure 2. Change characteristics of API and concentration of major pollutants from 2020 to 2022.  

 
 
had decreased by 22.2%, while the pollution 
level in western Tibet had increased. In general, 
the pollution centers in central and eastern 
China gradually shrank from northwest to 
northeast, while the air pollution in western 
China was always in western Xinjiang area 
(Figure 3a, 3b, 3c). The Moran's I of API was 
basically above 0.55, and its monthly average 
had a certain spatial agglomeration 
characterization (Figure 3d). The index values in 
January, June, and December of each year were 
higher, indicating that the concentration degree 
of air pollution was relatively obvious. The daily 
variation characteristics of air pollution in the 
Nanchang city, Jiangxi province, China were 
demonstrated in Figure 4. The daily variation 
characteristics of API, PM10, SO2, and NO2 all 
showed a "W" shape trend with the two peaks 
appearing at 9:00-11:00 and 20:00-22:00, 
respectively. The daily variation of air pollution 
in the city was dominated by the traffic exhaust 

pollution caused by the rush hours. In addition, 
as the number of cars increased, the proportion 
of NO2 emitted by the automobile in the total 
emissions increased year by year. The monthly 
change characteristics of API, PM10, SO2, and 
NO2 in 2022 were demonstrated in Figure 5 with 
all showing a "V" shape and the two peaks 
appearing from January to March and from 
October to December, respectively, indicating 
that the pollution was more serious in winter. 
Since March, the air had gradually improved with 
the best air quality in July. However, from 
September to January, air pollution gradually 
increased and peaked. The target city is a typical 
subtropical monsoon climate zone with 
northerly winds and dirty air in winter. In 
addition, the city has less rainfall in winter, which 
is not conducive to the spread of pollutants. The 
high temperature and rainfall in summer are 
conducive to the removal of pollutants. 
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Figure 3. Distribution of API values and trend of Moran's I index in 2021-2022. 
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Figure 4. Daily variation characteristics of air pollution in the city. 
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Figure 5. Monthly variation characteristics of API, PM10, SO2, and 
NO2 in 2022. 

 
shown in Figure 6. The firecrackers during the 
Spring Festival were the main cause of the air 
pollution on this  day,  which  was  confirmed  by 
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Figure 6. Hourly API and 4 types of air pollution changes on New Year's Eve and New Year's Day in the city from 2016 to 2018.  
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Figure 7. Spatial change characteristics of pollution factors PM10, SO2, and NO2 at nine monitoring stations in the city in 2022. 
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Table 1. Model estimation results. 
 

Variable Model 1 Model 2 Model 3 Model 4 

Ln GDP 0.0615*** -0.7028** - - 
Ln DN - - 0.0208** -0.2215 

Ln Density -0.0368*** -0.0372*** -0.0416*** -0.0412*** 
Ln Inno -0.0252*** -0.0261*** -0.0187*** -0.0199** 
Ln Sec -0.0430 -0.0297 0.0156 0.0178 

Ln Cons 0.0259** -0.0104*** 0.0355** 0.0322*** 
Ln FC 0.0025 0.0074 -0.0058 -0.0055 

Ln PM10 0.8153*** 0.8214*** 0.7932*** 0.7224*** 
Constant 0.6060** 4.7332*** 1.2114*** 2.5786*** 

R2 0.9218 0.9279 0.9215 0.9247 
Adjusted R2 value 0.9321 0.9346 0.9284 0.9244 

F value 511.38 465.37 484.87 427.05 
Notes: ***: significant result of 1%. **: significant result of 5%. *: significant result of 10%. 

 
 
that the city's air quality during the Spring 
Festival had improved greatly, especially the 
concentration of PM10 and SO2 decreased 
significantly since 2017 when the city's key areas 
were completely banned from fireworks. The 
spatial change characteristics of pollution factors 
including PM10, SO2, and NO2 at nine monitoring 
stations in the city in 2022 was shown in Figure 
7. In 2022, the spatial distribution of air pollution 
in the city was characterized by "suburban-
urban" polarization. In general, the API index in 
urban areas was high, especially the location of 
monitoring points 5, 6, and 7. Pollution factors 
such as PM10, SO2, and NO2 were consistent with 
the spatial distribution pattern of API values, 
showing heavy urban pollution and light 
suburban pollution. 
 
Analysis of influencing factors of PM10, SO2, 
NO2, and API 
The results of model estimation showed that 
population density (Density), urban technology 
level (Inno), and API were negatively correlated 
(Table 1). Regional gross domestic product (GDP) 
per capita had a positive impact on API. The 
population concentration could speed up the 
sharing of resources and reduce air pollution. 
The improvement of technical level could reduce 
the total amount of pollutants emitted during 
energy combustion, but the input of production 
factors would inevitably produce some air 
pollutants while bringing economic benefits. 

Although the government has strengthened 
environmental governance and implemented 
green emission reduction policies, the 
transformation of economic development mode 
is still a long-term process, and the current 
development mode of China's economy is still at 
the expense of the ecological environment. To 
ensure the real validity of the experimental 
results, this study conducted a spatial 
dependency test on the API value of the city. K-
nearest matrix with the nearest neighbors of 4 
and 6 was employed and the Moran scatter plot 
of the space weight matrix was obtained (Figure 
8). The results showed that when the number of 
neighbors was different, different spatial 
weights demonstrated significant spatial 
autocorrelation, and mainly distributed in the 
first and third quadrants with the Moran's I 
values of the spatial weight matrix as 0.8301 and 
0.8126, respectively, both of which passed the 
1% significance level test, indicating that there 
was a certain spatial dependence and spatial 
heterogeneity in the distribution of urban air 
pollution. The population density coefficient was 
distributed in the northeast and southeast 
(Figure 9). With the increase of population, the 
environmental pollution in these cities would 
become more serious. There was a significant 
negative correlation between air pollution and 
population density in other regions. The 
distribution of urban technical level coefficient 
was mostly negative, mainly concentrated in the 
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Figure 8. Moran's I scatter plot of national urban apis in 2021-2022. 
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Figure 9. Spatial distribution of variable coefficients. 
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Figure 10. Scatter plot of the logarithm of real GDP per capita versus the logarithm of SO2, NO2, and PM10 concentrations. 

 
 
Beijing-Tianjin-Hebei region, Shandong 
Peninsula, and other regions. The positive 
coefficient was concentrated in Fujian, indicating 

that the higher the technological content, the 
more serious the urban air pollution, which was 
due  to  the  expansion  of  production  scale  and  
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Figure 11. The relationship between the concentrations of SO2, NO2, PM10 and urban population at the end of the year. 

 
 
increased energy consumption with the 
advancement of production technology, which 
had exacerbated air pollution in cities. The 
scatter plots of the logarithms of real GDP per 
capita and the logarithms of SO2, NO2, and PM10 
concentrations were shown in Figure 10. The 
concentration of SO2 was negatively correlated 
with real GDP per capita, while NO2 
concentration was positively correlated with per 
capita real GDP. The relationship between PM10 
concentration and per capita real GDP was not 
obvious. The relationship between the 
concentrations of SO2, NO2, PM10 and urban 
population at the end of the year were shown in 
Figure 11. The correlation between SO2 
concentration and the population at the end of 
the year was not very clear, while the positive 
correlation between NO2 concentration and 
PM10 concentration was obvious. The results 
showed that as the population grew, the burden 
on the environment would increase. Based on 
the scatter plot and regression curves of the real 
GDP per capita and the total population of the 
city at the end of the year with the 
concentrations of SO2, NO2, and PM10, this study 
provided a basic judgment on the relationship 
between them. With the rapid growth of the 
urban population, the demand for housing, 
household appliances, and the consumption of 
automobiles continue to grow, resulting in 
serious production and living pollution, which 
brings a heavy burden to the environment. 
When the expansion of population size exceeds 
a certain value, resource consumption can be 
saved by means of public transportation sharing 
rate, resource use efficiency, sharing control of 
pollution, and emission reduction. The benefits 

of the above strategies far outweigh the 
disadvantages of the total increase, thus 
reducing environmental pollution. 

 
 

Conclusion 
 

In this study, the global spatial autocorrelation 
method and spatial descriptive statistics method 
were used to explore the status of urban air 
pollution in China and its spatial-temporal 
evolution characteristics. The influencing factors 
were also analyzed. In the time dimension, the 
API index of autumn and winter decreased by 
45% and 16.67%, respectively. The monthly 
mean value and monthly change of API showed 
"U" and "V" shape distributions. The 
concentration of PM10 and API values mostly 
reached more than 50 μg/m2. The concentrations 
of PM10 and API showed an upward trend after 
2 am and 8 pm. The "weekend effect" was 
obvious. In spatial dimension, the distribution of 
urban air pollution had certain spatial 
dependence and spatial heterogeneity. The 
pollution center gradually shrank from northwest 
to northeast. API monthly averages in January, 
June, and December of each year were analyzed 
and the concentration of air pollution was more 
obvious. In terms of influencing factors, 
population density and urban economic level had 
a negative relationship with API and main 
pollutants. Economic level had a positive effect 
on API, but it was not a completely linear 
relationship. There were still shortcomings in this 
study, which included that the selection of 
samples was not perfect enough, and there was 
a certain deviation in the measurement of the 
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national situation. The future research direction 
could start from those shortcomings. 
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