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Phytoplankton represented by Coscinodiscus plays a very important role in maintaining the global marine 
ecological balance. How to identify the dominant algae species effectively and accurately has become a difficult 
problem for researchers to solve. In this study, combined with the biomorphological characteristics and 
classification knowledge of phytoplankton, we design and apply a variety of technologies of image analysis and 
computer vision to make an in-depth research on the problem of automatic cell discrimination and species 
identification of marine Coscinodiscus from micrographs. A novel Coscinodiscus species identification strategy 
based on annular characteristic spectrum extraction was put forward. In the cell extraction stage, the maximum 
discrete measure matrix trace (MDMMT) method and some appropriate morphological processing were carried 
out to extract the cell targets from the grayscale image. In the Coscinodiscus discrimination stage, the circularity 
measurement and Hough circular target detection for the unknown connected regions in the binary images were 
executed successively to distinguish Coscinodiscus cells from a large number of phytoplankton binary images. In 
the feature extraction stage, the inscribed circle of each Coscinodiscus cell target was divided into four annular 
regions, and the equivalent pattern local binary pattern (LBP) texture characteristic spectrums with rotation 
invariance of these four annular regions were extracted, respectively as classification basis, which were then 
converted into normalized statistical histograms one by one. Since the dimension of each histogram was 59, the 
total feature dimension was 59 × 4 = 236. Support vector machine (SVM) was adopted as classifier to perform 
pattern recognition on the LBP texture feature data. The results demonstrated that the proposed strategy based 
on annular characteristic spectrum extraction achieved an average recognition accuracy of up to 85.98%, which 
could effectively and accurately realize the species recognition of common marine Coscinodiscus. 
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Introduction 
 
The observation of marine phytoplankton 
community structure and its diversity has great 
scientific and practical significance for guiding 
fishery production, monitoring the marine 
environment, ecosystem health assessment, and 

ecological disaster emergency monitoring 
(especially red tide warning) [1]. The focus of 
phytoplankton monitoring is to investigate its 
species composition, quantity distribution, and 
temporal and spatial changes. The most 
important monitoring indicator is the species of 
dominant algae. Coscinodiscus is a general term 
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for a large diatom class of planktonic microalgae, 
belonging to Bacillariophyta, Centricae, 
Discoidales, and Coscinodiscaceae [2-4]. 
According to statistics, this genus has a total of 
about 450 species worldwide including 
freshwater, seawater, and fossilized species with 
the most of them are marine phytoplankton. 
There are more than 51 species of Coscinodiscus 
in China. Traditional phytoplankton identification 
mainly relies on experienced algologist to 
manually observe the morphology under an 
optical microscope or even an electron 
microscope to determine the specific species, 
which is universally acknowledged as the most 
intuitive and accurate classification method. 
However, it requires a high level of professional 
knowledge and rich experience in classification 
and needs the classification staff to work 
meticulously for a long time.  
 
In recent years, computer vision technology-
based phytoplankton microscopic image 
recognition method has increasingly attracted 
the attention of academia because it has the 
ability to automatically classify to the “species” 
level, which is the basic unit of biological 
classification. The super image information 
processing capability possessed by the computer 
combined with the microalgae’s 
biomorphological structural characteristics has 
laid a solid foundation for the rapid and 
automatic analysis of micrographs. Sosik and 
Olson designed a feature selection method that 
integrated a series of image features including 
shape, size, orientation invariant moments, and 
co-occurrence matrix statistics, which was used 
for 22-category classification by Support Vector 
Machine (SVM) [5]. Tao et al. designed a real-
time SVM marine red tide algae classifier for 
flow-cytometry algae monitoring system that 
could use Support Vector Data Description 
(SVDD) to reject non-target algae and 
contaminative targets [6]. Dimitrovski et al. 
proposed a hierarchical multi-label classification 
strategy for diatom classification by building 
Predictive Clustering Trees (PCTs) that could 
simultaneously predict different taxonomic 
levels of genus, species, and form [7]. Verikas et 

al. put forward an image processing technique to 
detect and identify Prorocentrum minimum 
species in light and fluorescent microscopic 
images of phytoplankton, which selectively 
extracted several features characterizing cell 
contours and then utilized SVM and Random 
Forest (RF) as classifiers to distinguish 
Prorocentrum minimum cell from other objects 
[8]. Ouyang et al. designed a deep convolutional 
neural network model for automated plankton 
image classification which applied rotational and 
translational symmetry [9]. Lee et al. proposed a 
fine-grained plankton classification strategy for 
large-scale database by using Convolutional 
Neural Network (CNN) and incorporated transfer 
learning to solve the class-imbalance problem 
through pre-training CNN with class-normalized 
data and fine-tuning with original data [10]. Dai 
et al. developed a CNN-based automatic 
plankton classification system by extracting 
global and local features to describe shape and 
texture information of plankton, and specially 
designed a fully connected pyramid network 
structure to merge inner products from different 
sub networks [11]. Zheng et al. proposed an 
image classification algorithm for plankton that 
depended on multi-view features obtained by 
multiple kernel learning (MKL) [12]. Li et al. 
introduced a machine learning technique based 
on Mueller matrix imaging system to distinguish 
eight species of morphologically similar 
microalgae and one species of cyanobacteria 
through CNN [13], while Liu et al. proposed a 
deep learning method based on Deep Pyramidal 
Residual Networks (PyramidNet) for plankton 
image automatic classification [14]. Giraldo-
Zuluaga et al. proposed an automatic 
identification methodology with SVM and 
Artificial Neural Network (ANN) for digital 
microscopic images of Scenedesmus microalgae, 
in which they used adaptive contrast histogram 
equalization for pre-processing, active contour 
for segmentation, and statistical features for 
algal characterization [15]. Deglint et al. 
extracted fluorescence-based spectral-
morphological features and used machine 
learning to automatically recognize and 
enumerate six types of microalgae [16], and, in 
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addition, designed an automatic classification 
system by using a deep residual CNN to recognize 
six types of microalgae by integrating 
morphological features and their corresponding 
multi-wavelength signals [17]. Lumini and Nanni 
presented a pre-trained CNN structure for 
plankton automated recognition based on the 
fusion of several deep learning models, focusing 
on the fine tuning of different models, and 
transferring learning of the same model [18]. 
Park et al. used a neural architecture search 
(NAS) approach in ANN to find the best CNN 
model for the automatic classification of eight 
algae genera in watersheds experiencing algal 
blooms, including three diatoms, three 
cyanobacteria, and two green algae [19]. 
Furthermore, Park et al. proposed a hierarchical 
learning method by using semantic feature of 
Nonnegative Matrix Factorization (NMF) for the 
harmful red tide algal image automatic 
identification [20]. Qian et al. put forward a novel 
end-to-end multi-target deep learning strategy 
for algal detection and biological class/genus 
classification and achieved a colored microscopic 
algae dataset containing 27 genera [21]. Liu et al. 
applied a kind of CNN to classified 12 species of 
marine microalgae from 5 families through low-
resolution Mueller matrix images that were 
captured by Mueller matrix microscopy with LED 
light source at 514 nm wavelength [22]. 
 
According to previous studies, whether it is 
machine learning or deep learning based on CNN, 
there are few studies on target detection and 
species identification, specifically for the 
Coscinodiscus micrographs. Although deep 
learning technology has been developed rapidly 
and demonstrated great achievements in image 
analysis in the past five years, building deep 
learning models still requires training in large 
instance-level labeled image datasets. The 
lengthy and cumbersome data annotation 
obviously hinders the development of deep 
learning algorithms in the detection and 
classification of phytoplankton micrographs with 
complex biomorphological details. This study 
designed and applied a series of technologies of 
image analysis and computer vision to solve the 

problem of automatic cell discrimination and 
species identification of Coscinodiscus by 
combining the classification knowledge and 
biomorphological characteristics of marine 
phytoplankton in micrographs. This research 
would provide the possibility of on-site and in situ 
automatic classification for large batches of 
Coscinodiscus sample images. 
 
 

Materials and methods 
 
MATLAB R2019B (64-bit) software (MathWorks, 
Natick, MA, USA) was employed for the 
programming of this study under the Windows 
10 operating system (Microsoft, Redmond, WA, 
USA).  
 
Specimen image collection 
A total of 10 Coscinodiscus species including 
Coscinodiscus curvatulus, Coscinodiscus subtilis, 
Coscinodiscus wailesii, Coscinodiscus argus, 
Coscinodiscus radiatus, Coscinodiscus oculus-
iridis, Coscinodiscus asteromphalus, 
Coscinodiscus apiculatus, Coscinodiscus 
nodulifer, and Coscinodiscus excentricus were 
involved in this study based on the analysis of the 
population structure, distribution, and 
occurrence frequency of planktonic microalgae in 
the coastal waters of China including the Bohai 
Sea, the Yellow Sea, the East China Sea, and the 
South China Sea. All samples were collected from 
the South China Sea and the East China Sea, and 
their optical micrographs were captured by using 
Olympus BX optical microscopes (Olympus 
Corporation, Tokyo, Japan) with high-speed 
micrography system QImaging Retiga 4000R 
FAST 1394 CCD (QImaging Corporation, Surrey, 
British Columbia, Canada). 
 
Cell extraction 
A multicellular target extraction strategy was 
designed in this study by using Maximum 
Discrete Measure Matrix Trace (MDMMT) 
method (Figure 1). The input color micrograph 
was first converted into a grayscale image to 
remove the hue and saturation information and 
retain only the brightness. The gray values of the  
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Figure 1. Flow chart of multicell extraction by using Maximum Discrete Measure Matrix Trace (MDMMT) method. 

 
 
grayscale images were then linearly mapped to 
enhance the contrast. After gray stretching, the 
new image became brighter and owned a more 
prominent cell region. Given the vast grayscale 
difference between the cellular target and the 
background, MDMMT algorithm was applied for 
threshold segmentation. A 2D gray histogram 
was built and used to segment the stretched 
grayscale image. For the acquired binary image, 
morphological CLOSE and hole filling operation 
were performed to repair broken contours, 
remove noise, and reconnect several adjacent 
regions that might be broken into pieces by 
mistake. Considering that there might be 
multiple cells in one image, further extraction of 
those connected components with larger areas 
was performed. Since the biggest connected 
region was usually an algae cell, those connected 
regions whose areas were equal to or larger than 
35% of the biggest connected region’s area were 
extracted. At the end of the process, the 
generated binary image and the initial gray image 
were logically AND operated and merged into 
one image with gray-level cellular foreground 
and black background as the final extracted 
result. 
 

Coscinodiscus discrimination 
When many cells were extracted in batches, it 
was necessary to find a machine discrimination 
method to automatically judge whether they 
belonged to Coscinodiscus. The external shape 
characteristics of a cell were parameterized and 
mathematically defined and quantified the 
degree of its proximity to the circle (circularity). 
A reasonable circularity threshold through a large 
number of experimental data was manually 
selected with the circularity of a cell greater than 
the threshold being preliminarily determined as 
Coscinodiscus. Hough Transform was then used 
to detect circular targets in the image of 
suspected Coscinodiscus cells before the final 
determination of Coscinodiscus cells and the cell 
number by computer. 
 
(1) Circularity measurement 
The connected regions in binary segmented cell 
micrographs were labeled to calculate the Mark 
Matrix. Specifically, assuming that there was n 
connected regions (numbered 1, 2, …, n, 
respectively), all pixels in each connected region 
were assigned the same number. Then a Mark 
Matrix consistent with the size of the binary 
image was created and the numbers at the 
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corresponding positions in the Mark Matrix were 
recorded. Therefore, all elements with a value 
equal to k in the Mark Matrix represented the 
pixels of the k-th (1 ≤ k ≤ n) connected region. The 
contour perimeter Ck of k-th connected region 
was calculated according to the coordinates of its 
boundary pixels. The descriptors of k-th 
connected region could be obtained through the 
Mark Matrix including the area Sk, centroid 
coordinates, and bounding box. The circularity of 
the k-th connected region was defined as follows. 
 

                                      (1) 

 
By comparing a large amount of experimental 
data on circularity measurement, 0.65 was 
selected as the circularity threshold as the 
preliminary basis for judging Coscinodiscus 
because there were obvious differences in the 
circularity of cells between Coscinodiscus and 
non-circular phytoplankton. When the circularity 
of a connected region was greater than the 
threshold 0.65, it could be preliminarily 
determined as a Coscinodiscus cell. In this case, 
its regional centroid could be approximately 
regarded as the center of the circle and marked 
with a red dot. Then, the Region of Interest (ROI) 
on image defined by the bounding box was 
cropped from its corresponding image with black 
background and gray cell foreground. If no 
circular target was detected in a Mark Matrix, the 
original micrograph corresponding to this matrix 
was automatically classified as a non-
Coscinodiscus image. 
 
(2) Circular target detection 
For the microscopic image that existed 
Coscinodiscus cells preliminarily determined in 
the previous step, it needed to be further verified 
by Hough Transform detection. Hough Circle 
Transform is a fast and effective technique for 
detecting circles in images [23]. In order to 
reduce the number of noise and the risk of false 
detection, Gaussian low-pass filter was employed 
to linearly smooth the preliminarily determined 
Coscinodiscus gray image, and then the filtered 

image was used as the input image of Hough 
Circle Transform algorithm. All parameters were 
set to appropriate fixed values or automatically 
obtained values for image batch detection. For 
the suspected Coscinodiscus cell screened 
through the circularity measurement link, if no 
circular target was detected through the Hough 
Transform link, it would be recognized as non-
circular phytoplankton. Otherwise, it could be 
finally recognized as Coscinodiscus. 
 
Annular characteristic spectrum extraction 
The equivalent pattern LBP texture descriptor 
with rotation invariance was used to construct a 
59-dimensional feature vector. The original 
algorithm was improved to extract only the 
characteristic spectrums of four annular regions 
inside one Coscinodiscus cell. Since the lucolus on 
the shell surface of Coscinodiscus is arranged 
radially or spirally from the center to the shell 
edge, the circular cell targets were divided into 
four annular regions and their characteristic 
spectrums were extracted respectively. Because 
the edge of the connected region was not neat 
enough, it might affect the symmetry of the 
pattern. Therefore, the inscribed circle of the 
connected region was first used to replace the 
original connected region. Then the inscribed 
circle was cut into 1/4, 2/4, 3/4, and a whole (4/4) 
circle. By making a difference between adjacent 
sub circles, four annular regions could be 
obtained and were named as Blocks 1, 2, 3, and 
4, respectively. The ROI of each block was 
standardized and placed on black square masks. 
Local Binary Pattern (LBP) is an operator used to 
describe the local texture features of an image 
[24]. Assuming that the number of sampling 
points in the neighborhood is n, the number of 
traditional LBP patterns can reach 2n. An 
improved equivalent pattern LBP algorithm with 
rotation invariance was used to reduce the types 
of patterns [25], which made the number of 
patterns sharply reduced to n × (n - 1) + 2 
equivalent patterns and 1 mixed pattern. For the 
3 × 3 neighborhood with 8 sampling points, the 
number of patterns was reduced from the initial 
256 to only 59. Among them, 58 equivalent 
pattern types could contain most of the original  
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Figure 2.  Coscinodiscus oculus-iridis cell extraction pipeline. 

 
 
LBP values, while the remaining LBP values were 
included in the 59th mixed pattern type. Through 
the equivalent pattern LBP algorithm, each pixel 
in a gray image could be assigned an LBP code. 
The LBP codes of all pixels could be extracted to 
construct a new image, which was called LBP 
characteristic spectrum. The characteristic 
spectrum was then transformed into the form of 
statistical histogram to obtain a 59-dimensional 
feature vector. Considering that, when the 
number of pixels in each region was different, the 
components in the corresponding feature vector 
were not consistent. The total number of pixels 
in each annular region was used to normalize 
their histograms, respectively. 
 
 

Results and discussion 
 

A total of 500 microalgae micrographs were 
tested to discriminate Coscinodiscus from other 
species including 350 non-circular phytoplankton 
micrographs and 150 Coscinodiscus micrographs.  
The results showed that only 3 Coscinodiscus 
images were wrongly identified as non-circular 
phytoplankton images with two of them due to 
the connection of Coscinodiscus cells with a large 
area of flocs resulting in shape “distortion” and 
the circularity measurement value lower than 
0.65. In the third image, the edge structures were 

seriously missing, so no circular target was 
detected in the Hough Transform stage. The total 
discrimination accuracy of Coscinodiscus 
micrographs was 99.4%. 
 
All the process images of cell extraction 
exemplified by Coscinodiscus oculus-iridis were 
displayed in Figure 2. The results showed that 
our extraction strategy could not only effectively 
remove various types of noise, but also retain 
the complete shape of Coscinodiscus cell as 
much as possible. An intuitive visualization 
technology was applied to mark the circularity. 
Each Mark Matrix was converted into a true 
color image for display, in which the background 
and connected regions were filled with different 
colors for differentiation (Figure 3). The contour 
and center of the detected circle on the 
microscopic image were drawn. The results 
showed that Gaussian filter made the gray image 
blurred, and significantly weakened the drastic 
change of gray at the cell edge, making it a 
smooth transition. The detected circle had the 
center and radius values close to the minimum 
surrounding circle. On the other words, if two 
circles appeared in the same image, they were 
similar in size, not far apart in position, and some 
contours would even coincide, which manifested 
that the algorithm had excellent detection effect 
for circular targets (Figure 4). 
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Figure 3.  Circularity measurement. 

 
 

     
(a) (b) (c) (d) (e) 

 
Figure 4.  Circular target detection process in Coscinodiscus argus image (500×400). (a) original micrograph; (b) grayscale image; (c) Gaussian 
filtering; (d) the circumscribed circle of a connected region with a center of (250, 197) and a radius of 180; (e) the detected circle with a center 
of (251, 195) and a radius of 176.  

 
 
Taking Coscinodiscus asteromphalus cell as an 
example, the processing process of inscribed 
circle, sub circles, and annular regions was 
shown in Figure 5(a)-(d). The LBP characteristic 
spectrums and their corresponding normalized 
statistical histograms of the four annular regions 
of a Coscinodiscus asteromphalus cell were 
shown in Figure 5(e) and Figure 6. 

SVM based on radial basis kernel function was 
used as classifier to train and recognize LBP 
texture feature data. In this study, a total of 600 
Coscinodiscus micrographs were selected 
including 400 micrographs for training and 200 
micrographs for recognition. The results showed 
that the recognition accuracy of 10 species of 
Coscinodiscus ranged from 77.78 to 94.12% with  
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Figure 5.  Extraction process of LBP characteristic spectrums of a Coscinodiscus asteromphalus cell. (a) The inscribed circle of the connected region. 
(b) Cut the inscribed circle. (c) Four annular regions of the inscribed circle. (d) Standardized square images of four annular regions. (e) LBP 
characteristic spectrums of the four annular regions. 
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Figure 6.  The normalized LBP statistical histograms of the four annular regions of a Coscinodiscus asteromphalus cell. (Note: the horizontal axis 
was the sequence number of the pattern, and the vertical axis was the proportion of pixels belonging to a certain pattern to the total number of 
pixels). 

 
 
the average recognition accuracy of 86.50%. Due 
to a certain error rate in the Coscinodiscus 
discrimination stage, the actual recognition 
accuracy was between 77.31 and 93.55% with 
the actual average recognition accuracy of 
85.98% (Table 1). These data clearly 
demonstrated that the species identification 
method of Coscinodiscus based on annular 
characteristic spectrum extraction had achieved 
encouraging performance. 
 
This study combined knowledge of 
phytoplankton classification and designed and 
applied a variety of technologies of image 
analysis and computer vision to explore a 
relatively complete species identification 

scheme for common marine Coscinodiscus. The 
study used biomorphological characteristics of 
marine phytoplankton in micrographs to explore 
the problem of automatic cell discrimination and 
species identification of Coscinodiscus by 
extracting phytoplankton cell targets, 
determining threshold segmentation using 
MDMMT method and processing morphological 
images. Coscinodiscus cells were automatically 
distinguished from a large number of 
phytoplankton foreground binary images. The 
circularity measurement and Hough circular 
target detection for the unknown connected 
region were performed to judge whether it was 
Coscinodiscus or non-Coscinodiscus. In the 
feature  extraction  stage,  we  chose  the  texture 
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Table 1. Identification of Coscinodiscus species (discrimination accuracy R1 = 99.4%). 
 

Species name 
No. of test 

samples 
No. of correctly 

identified samples 
Recognition 
accuracy R2 

Actual recognition 
accuracy R1×R2 

Coscinodiscus curvatulus 21 18 85.71% 85.20% 
Coscinodiscus subtilis 18 14 77.78% 77.31% 
Coscinodiscus wailesii 20 18 90.00% 89.46% 
Coscinodiscus argus 19 17 89.47% 88.94% 
Coscinodiscus radiatus 23 20 86.96% 86.43% 
Coscinodiscus oculus-iridis 22 18 81.82% 81.33% 
Coscinodiscus asteromphalus 16 14 87.50% 86.98% 
Coscinodiscus apiculatus 20 16 80.00% 79.52% 
Coscinodiscus nodulifer 17 16 94.12% 93.55% 
Coscinodiscus excentricus 24 22 91.67% 91.12% 

Overall 200 173 86.50% 85.98% 

 
 
feature as a classification basis and extracted the 
rotation-invariant LBP texture descriptor of 
equivalent pattern. Each circular cell target was 
divided into four annular regions and the 
characteristic spectrums of these four annular 
regions were extracted respectively. Each 
characteristic spectrum was then converted into 
the form of normalized LBP statistical histogram 
representing a 59-dimensional feature vector 
with the total feature dimension of 236. SVM 
was then used as classifier to perform pattern 
recognition on the LBP texture feature data to 
realize specific species identification of 
Coscinodiscus. The results of this study provided 
the possibility of on-site and in situ automatic 
classification for large batches of Coscinodiscus 
sample images, especially the rapid and effective 
determination of dominant algae species, which 
would undoubtedly have good application 
prospects. 
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