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Agricultural land is important in ensuring farmland security and promoting sustainable land use. However, the 
knowledge about characteristics and spatial variability of soil organic carbon (SOC), total nitrogen (TN), and total 
phosphorus (TP) in the region of Xining, Qinghai, China has yet to be discovered. Therefore, this study aimed to 
analyze surface soil (0-20 cm) cultivated land in Xining. The research examined this region's characteristics and 
spatial variability of SOC, TN, and TP. Field collection and laboratory experiments were conducted, and statistical 
and geostatistical methods were used to analyze data. The results indicated that SOC levels were insufficient, TN 
content was moderate, and TP content was abundant in Xining. The spatial distribution of SOC, nitrogen (N), 
phosphorus (P), and stoichiometric ratios exhibited moderate variability. Notably, soil carbon (C)/P, N/P, C/N, and 
TP displayed strong spatial correlations in Xining, primarily influenced by structural factors. The moderate spatial 
variation observed in TN and SOC in the soil could be attributed to random and structural factors. Furthermore, 
the analysis of SOC, TN, TP, and ecological stoichiometric ratios in cultivated soil across Xining demonstrated a 
positive cluster distribution pattern. The horizontal spatial distribution types of SOC, TN, C/N, C/P, and N/P in the 
0-20 cm soil layer of cultivated land in Xining exhibited differentiation from south to north with a gradual increase 
observed from south to north. No significant correlation was observed among the other indices except for soil 
C/N, TN, and TP. Overall, this study was of great significance to the characteristics and spatial variability of SOC, 
TN, and TP in cultivated land in Xining. The findings contributed to understanding farmland security and 
sustainable land use practices in this region, enabling informed decision-making for land management and 
agricultural practices. 
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Introduction 
 
Ecological stoichiometry is a crucial discipline 
that investigates the balanced relationship 
between energy and key elements such as 
carbon (C), nitrogen (N), phosphorus (P), and 
others in ecosystem interactions [1, 2]. It plays a 
significant role in unravelling the cycles of organic 

carbon (OC), N, and P and their interactions 
within ecosystems. OC, N, and P are fundamental 
elements in terrestrial ecosystems with OC 
serving as the main nutrient source and a vital 
component of the terrestrial soil carbon pool. 
OC's content directly influences terrestrial 
ecosystems' stability, carbon dioxide (CO2) 
concentrations, and the dynamic balance of the 

mailto:cailq@gsau.edu.cn


Journal of Biotech Research [ISSN: 1944-3285] 2023; 15:75-86 

 

76 

 

carbon cycle [3, 4]. Soil nitrogen and phosphorus 
are essential elements that affect plant growth, 
promote microbial biomass development, and 
maintain C and N cycles in the soil, acting as 
limiting factors with significant implications for 
ecosystem structure and function [5, 6]. 
 
Soil, as a crucial component of ecosystems, 
facilitates the exchange of matter and energy and 
exhibits extensive connections with soil 
organisms, plants, and microorganisms [7, 8]. 
However, the elements of soil C, N, and P are 
interconnected, and analyzing the dynamics of 
soil nutrient elements solely from the 
perspective of a single element cannot fully 
capture the dynamic changes in soil nutrient 
elements. Therefore, studying the stoichiometric 
ecological characteristics of soil nutrients holds 
significant value in comprehending the cycling 
patterns of soil nutrients in cultivated land [9, 
10]. Several studies have explored the nutritional 
characteristics and stoichiometric relationships 
in different ecosystems. Reza, et al. analyzed 
changes in nutritional characteristics in the lower 
Brahmaputra plains of India [11]. Bollinska, et al. 
identified influential factors in the carbon, 
nitrogen, phosphorus cycles in the deadwood-
soil system of mountain forest ecosystems [12]. 
Zhang, et al. discussed the contents and 
stoichiometric characteristics of C, N, and P in 
reclaimed farmland soil using geostatistics to 
explain the variation of soil nutrients [13]. Du 
used the geostatistical model and 3S technology 
to study the spatial variation of N and P ecological 
stoichiometric in 0-20 cm surface soil in the 
typical mollic epipenon region of Northeast China 
and its influencing factors [14]. Additionally, 
Zhang, et al. investigated peatland soil in China, 
revealing close relationships between water, 
temperature, precipitation, soil organic carbon, 
total nitrogen, total phosphorus, and the C/N, 
C/P, N/P ratios [15]. 
 
While stoichiometric studies on grassland, 
wetland, and forest ecosystems have made 
significant progress in recent years, research on 
the stoichiometric characteristics of cultivated 
soil still requires further investigation, 

particularly in Xining, Qinghai, China. With the 
intensification of human disturbance and various 
factors including changes in land management 
practices, cultivated soil's physical and chemical 
properties may vary, affecting soil nutrient 
content. This study examined soil OC, N, and P 
based on the stoichiometric ecological 
characteristics of cultivated land in Xining to 
uncover the spatial differentiation of soil 
nutrients in cultivated land in this area and to 
provide scientific basis for formulating 
reasonable measures for soil nutrient 
management in the region. Moreover, this study 
hypothesized that the spatial variability and 
characteristics of soil organic carbon (SOC), total 
nitrogen (TN), total phosphorus (TP) cultivated in 
Xining would exhibit distinct patterns and 
relationships. It was also hypothesized that SOC, 
TN, TP, and their stoichiometric ratios would 
display spatial correlations primarily influenced 
by structural factors. Finally, the research 
predicted a positive cluster distribution pattern 
for SOC, TN, TP, and ecological stoichiometric 
ratios in cultivated soil across the area of Xining, 
Qinghai, China. 
 
 

Materials and Methods 
 

Overview of the study area 
The location of Xining is at 36°34'3" ~ 37°28'3" 
north latitude and 101°49'17" ~ 101°54'17"east 
longitude on the eastern edge of the Qinghai-
Tibet Plateau, Huangshui Valley, a tributary of the 
Yellow River. The city's terrain inclines from north 
to south with high in the southwest and low in 
the northeast and is distributed in a ribbon of 
east-west direction. Xining belongs to the 
continental plateau semi-arid, plateau alpine 
cold temperature climate. The average sunshine 
duration of the year is 2,510.1 h. The average 
annual temperature is 7.6°C with the highest of 
34.6°C and the lowest of -18.9°C. It is 2,168 ~ 
4,622 meters above sea level with an average 
altitude of 2,261 m. The annual average 
precipitation is 330 ~ 450 mm, and the 
evaporation is 1,363.6 mm, more in the west 
than in the east. The valley land has high 
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potential fertility, good structure and good 
fertilizer, and water retention performance. 
However, the soil cultivability is poor. The soil is 
loose with serious soil erosion in the alpine and 
middle-high mountain areas. The total land area 
of Xining is 7,613.91 km², while the cultivated 
land area is about 2,133.61 km², of which the 
irrigated land area is 102.85 km² and the dry land 
area is 2,030.76 km². 
 
Sample collection 
(1) Layout of sample points 
Considering soil type, administrative division, 
cultivated land utilization, cultivated land grade, 
and soil quality, the research area for this study 
included the five districts and two counties of 
Xining, Qinghai, China. The cultivated land area of 
Xining in 2020 served as the basis for the analysis. 
A sample point of 666.67 hectare of cultivated 
land was set up, and 306 sampling points were 
set up in Xining (Figure 1). 
 
 

 
 
Figure 1. Location and grid map of the study area (Xining, Qinghai, 
China). 

 
 
(2) Soil sample collection and measurement 
A 5-point sampling method was adopted for each 
sampling point. The five points were the center 

point of the two diagonal lines of the field and the 
four points on the diagonal line that were 2.5 km 
away from the center. The soil at the edge of the 
field was avoided. Each sampling point was 
accurately located by using GPSMAP® 64 system 
(Garmin, Olathe, Kansas, USA). The soil sampling 
depth was 0 - 20 cm after removing the topsoil 
layer. A total of 306 sampling points were 
selected. Each soil sample was packed into a PVC 
bag, and labels were affixed inside and outside, 
indicating the sampling number, name, sampling 
depth, sampling location, date, sampling person, 
and the latitude and longitude of the center 
point, and the altitude. The samples were then 
transported to the laboratory within 24 hours. 
After natural air drying and crushing, the plant 
roots and gravel were picked out. The soil sample 
was made through a 2 mm soil screen, and then 
put into a sealed bag and stored for testing. 
  
According to the method of soil agrochemical 
analysis [16], the SOC concentrations were 
determined by using the potassium dichromate 
volumetric method (K2Cr2O7/H2SO4) [17], which 
involved oxidizing 0.5 g of soil with a solution of 
K2Cr2O7 and H2SO4 at 170°C followed by titrating 
excess dichromate with 0.25 mol/L FeSO4. The TN 
concentrations were measured by applying 
Kjeldahl nitrogen method [18] and K9840 
Kjeldahl nitrogen analyzer (Drawell Scientific 
Instrument, Shanghai, China), which involved the 
digestion of 1.0 g of soil with a catalyst (H2SO4-
K2SO4-CuSO4-Se mixture) at 380°C and distillation 
sample by adding 30 mL of NaOH. Released 
ammonium was captured in 10 mL of H3BO3. The 
titer of formed ammonium borate was measured 
by the addition of 0.05 N H2SO4 using a methyl 
red and bromocresol green indicator. The TP 
concentrations were measured by using TU-1901 
UV-Vis spectrophotometer (Beijing General 
Analytic Instrument, Beijing, China) and NaOH 
melt-molybdenum-antimonic resistance 
colorimetric method after HClO4-H2SO4 digestion 
[19]. The major reagents for SOC, TN, and TP 
measurements were from China National 
Pharmaceutical Group Corporation, Beijing, 
China. 
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Statistical analysis 
(1) Semi-variance function 
Semi-variation function is one of the most widely 
used methods to describe the spatial pattern of 
soil in geostatistics [20]. It was a function of the 
semi-variation value of data points and the 
distance between data points, which was used to 
study soil's spatial structure and spatial 
correlation. The formula for the semi-variance 
function was as follows: 
 

 
 
where y (h) was the semi-variance function, h 
was the spatial distance between sample points, 
N (h) was the sampling pick-up distance, h was 
the total logarithm of points, Z (xi) and Z (xi + h) 
were the observed values of Z (x) at the spatial 
positions xi and xi + h, respectively. The semi-
variance function had three important 
parameters, which were the bullion value (C0), 
the base value (C0 + C), and the range [21]. The 
bullion value represented the constant at which 
the variance function remained unchanged at a 
distance of 0, while the base value represented 
the constant at which the variance function 
became stable as the distance increased. Spatial 
variability could be divided into two types 
including random and structural variations. The 
strength of spatial variability could be reflected 
by the ratio of the nugget value to the base value 
(nugget coefficient), which could also be called 
the nugget effect C0 / (C0 + C). The bullion 
coefficient could reflect the proportion of 
random factors in the total variation factors. The 
larger the bullion coefficient was, the stronger 
the influencing factors of random variation were 
and the weaker the spatial correlation was, and 
vice versa. The variable range referred to the 
range of spatial continuity of patches with certain 
correlation properties. When the maximum 
variable range was exceeded, the spatial 
structure change would not be affected, and the 
spatial variables within the variable range had 
spatial autocorrelation. 
 

The semi-variance function included four models 
as the spherical model, the exponential model, 
the gaussian model, and the linear model [22]. 
The calculation formula of each model was as 
follows: 
 
Spherical model: 

 
 
Exponential model: 

 
 
Gaussian model: 

 
 
Linear model: 

 
 
where C0 was the bullion coefficient, C was 
structural variance, (C0 + C) was the base value, a 
was variable range. The semi-variance function 
was analyzed by using GS+ 9.0 software (Gamma 
Design Software, Plainwell, Michigan, USA) to 
calculate the optimal function model of each 
index and determine the parameters of each 
index according to the minimum residual error 
and maximum determination coefficient.  
 
(2) Moran’s index 
Spatial autocorrelation analysis tests whether 
the observed value of a spatial position variable 
is significantly correlated with the observed value 
of its adjacent spatial points. In this study, global 
Moran’s I was selected to quantify soil C, N, and 



Journal of Biotech Research [ISSN: 1944-3285] 2023; 15:75-86 

 

79 

 

P's spatial autocorrelation characteristics and 
demonstrated the spatial correlation between 
things globally with the calculation formula 
below [23].  
 

 
 
where n represented the total number of units in 
the space, and yi and yj represented the value of 
the variable y at the space points i and j, 
respectively. ӯ was the mean and Wij was the 
weight of the distance between the sample 
points. The value range of the Moran’s I was [1, -
1] with the Moran’s I < 0 as the spatial region 
anomaly, the Moran’s I close to -1 as strong 
spatial diversity, and the Moran’s I > 0 as the 
space having agglomeration. The closer the value 
was to 1, the stronger the spatial autocorrelation. 
The Moran’s I = 0 indicated that there was no 
spatial autocorrelation, and the random 
distribution. The scatter plot of Moran’s I had 4 
quadrants, from the first to the fourth quadrant. 
There were 4 distribution types of "high-high", 
"low-high", "low-low", and "high-low". In the first 
and third quadrants, it belonged to the "high-
high" and "low-low" cluster distribution types, 
while, in the second and fourth quadrants, it 
belonged to the "low-high" and "high-low" 
isolated distribution types. By using GeoDa 
software (The University of Chicago, Chicago, 
Illinois, USA), the global Moran’s I was selected to 
quantify the spatial autocorrelation and analyze 
the clustering or isolated spatial distribution 
type.  
 
(3) Data analysis 
SOC, TN, and TP data were processed by using 
Microsoft Excel (Microsoft, Redmond, 
Washington, USA). The descriptive statistical 
analysis was conducted by using SPSS 24.0 
software (IBM, Armonk, New York, USA). 
Kolmogorov-smolov test (K-S test) was used for 
testing, and correlation analysis was conducted.                                                          
The optimal model of each index was used for 
ordinary Kriging method interpolation by using 
ArcGIS 10.6 (ESRI, Redlands, California, USA), and 

the spatial distribution characteristics of OC, TN, 
and TP in Xining were obtained. 
 
 

Results and discussion 
 
Descriptive statistical analysis 
The nutrient analysis results were presented in 
Table 1, showing the variation range of nutrients 
in the order of TP > SOC > TN. Additionally, Table 
2 assessed the nutrient levels in cultivated land in 
Xining. The results indicated that SOC fell into the 
fourth grade, indicating a lack of content. TN was 
classified as the third grade, representing 
moderate content. On the other hand, TP fell into 
the first grade, indicating extremely rich content. 
These findings suggested that the area's overall 
quality of soil nutrients was generally low, except 
for TP. It was important to utilize TP based on 
specific local conditions effectively. The 
distribution of soil nutrients was analyzed by 
using a normal distribution test. All indexes 
showed a non-normal distribution except for 
SOC. However, after applying root-mean-square 
conversion, TN and TP followed a normal 
distribution. Similarly, after logarithmic 
conversion, the ratios of C/N, C/P, and N/P also 
exhibited a normal distribution. Consequently, a 
semi-variance function analysis was conducted 
on each index. Table 1 presented the coefficient 
of variation for the cultivated soil indexes in 
Xining. The values ranged from 10% to 100% with 
a concentration between 40% and 75%. These 
coefficients indicated a moderate intensity of 
variation for all indexes. Notably, the C/P and N/P 
ratios exhibited relatively large coefficients of 
variation, surpassing 70%. On the other hand, the 
coefficients of variation for SOC, TN, TP, and C/N 
were similar. The study revealed distinct spatial 
patterns and variability of SOC, TN, and TP in the 
cultivated land of Xining. The results showed that 
SOC levels were insufficient, TN content was 
moderate, and TP content was abundant. This 
spatial variability of nutrient levels could be 
attributed to various factors such as soil 
hydrothermal conditions, vegetation cover, and 
agricultural practices [24]. The higher SOC and TN 
contents   in   the   study   area   compared  to   the 
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Table 1. Basic content characteristics of soil indexes. 
 

Soil properties N Min Max Mean Median S.D. Range C.V. (%) D.T. 

SOC (g/kg) 306 2.61 43.69 14.49 13.608 5.93 41.08 40.92 no 
TN (g/kg) 306 0.27 4.06 1.54 1.46 0.53 3.79 34.42 square 
TP (g/kg) 306 0.51 4.02 1.56 1.79 0.74 3.51 47.44 square 
C/N 306 3.60 87.07 9.49 9.38 4.65 83.47 49.00 log 
C/P 306 1.40 57.29 12.67 8.53 9.46 55.89 74.66 log 
N/P 306 0.15 4.31 1.35 0.94 0.95 4.16 70.37 log 

Notes: N: number of soil samples, S.D.: standard deviation, C.V.: coefficient of variation, D.T.: distribution type. 

 
 
Table 2. Soil nutrient classification standards of the second national soil survey. 
 

Grade Trophic grade SOC (g/kg) TN (g/kg) TP (g/kg) 

First Rich ＞40 ＞2.00 ＞1.0 

Second Richer [30, 40] [1.50, 2.00] [0.8, 1.0] 
Third Medium [20, 30] [1.00, 1.50] [0.6, 0.8] 
Fourth Lack [10, 20] [0.75, 1.00] [0.4, 0.6] 
Fifth Lesser [  6, 10] [0.50, 0.75] [0.2, 0.4] 
Sixth Less [  0,   6] [0.00, 0.50] [0.0, 0.2] 

 
 
Table 3. Optimum semi-variance function model and parameters of soil nutrients. 
 

Soil properties Fitted model C0 C0+C C0/C0+C (%) A(m) R² RSS 

SOC Exponential 0.3980 0.81 49.14 51850 0.926 5.933×10-3 
TN Exponential 0.03066 0.06142 49.92 49450 0.844 7.125×10-5 
TP Gaussian 0.013 0.436 2.98 80890 0.987 3.032×10-4 
C/N Exponential 0.0056 0.0952 5.88 990 0.106 6.868×10-4 
C/P Gaussian 0.1780 1.2880 13.82 60360 0.991 3.53×10-3 
N/P Gaussian 0.139 1.1430 12.16 57020 0.993 2.613×10-3 

Notes: C0: nugget, C0+C: sill, C0/(C0+C): nugget/still, A (m): range, RSS: residual sum of squares. 

 
 
national average could be explained by favorable 
conditions for organic matter decomposition 
such as abundant water sources and suitable soil 
hydrothermal conditions in Xining. These factors 
contributed to the accumulation of carbon and 
nitrogen nutrients in the soil, making it relatively 
fertile. Additionally, applying nitrogen-based 
fertilizers in agricultural production might have 
contributed to the moderate TN content [25]. 
The high content of TP in the soil could be 
attributed to the intensive use of phosphorus 
fertilizers in the study area [26]. However, the 
alkaline nature of the soil and the presence of 
carbonate in calcareous soil could lead to a 
strong fixation of phosphorus, resulting in a high 
content of TP [27], which suggested that 

phosphorus fertilizers applied in the region might 
not be fully available to plants, and appropriate 
measures should be taken to improve 
phosphorus availability [28].  
 
Spatial structure analysis 
Geostatistical analysis using GS+ software was 
conducted to investigate the spatial 
characteristics of SOC, TN, TP, and their 
ecological stoichiometric ratios in cultivated soil 
in Xining. The results were presented in Table 3. 
The fitting models for SOC, TN, and C/N in 
cultivated soil were found to be exponential 
models, while Gaussian models provided the best 
fit for other indicators. The fitting degrees, as 
indicated by the R² values, were generally good, 
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except for soil C/N which had a lower reasonable 
degree. SOC, TP, C/P, and N/P exhibited high 
fitting degrees with values above 0.885, 
suggesting an excellent fit. The spatial 
autocorrelation analysis revealed that SOC, TN, 
and TP exhibited strong spatial autocorrelation 
within relatively small ranges of 51,850, 49,450, 
and 80,890 meters, respectively. However, their 
spatial continuity was poor, indicating 
discontinuity in their distribution. On the other 
hand, the spatial continuity of C/N, C/P, and N/P 
was also poor, with range values of 990, 60,360, 
and 57,020 meters, respectively, suggesting 
limited spatial consistency in the distribution of 
these ratios in Xining soil. The results presented 
in Table 3 demonstrated the order of the bullion 
effect for soil indexes as TN > SOC > C/P > N/P > 
C/N > TP. Except for the block-based ratio of TN 
and SOC, the bullion effect for other indexes was 
less than 25%. The results showed that the 
carbon to phosphorus, nitrogen to phosphorus, 
carbon to nitrogen and total phosphorus had 
strong spatial correlation. These indices were 
mainly affected by structural factors such as 
climate and terrain, with a relatively weak impact 
from random factors (e.g., human activities). The 
bullion effects of TN and SOC were 49.92% and 
49.14%, respectively, indicating that the spatial 
variations of TN and SOC in the soil were mainly 
attributed to random and structural factors that 
contributed to a moderate spatial correlation in 
TN and SOC distribution. The study found strong 
spatial correlations among soil C/N, C/P, N/P, and 
TP, which indicated that the spatial distribution 
of these nutrients was primarily influenced by 
structural factors such as climate and terrain [29]. 
The positive correlation between SOC and TN and 
SOC and ecological stoichiometric ratios 
highlighted the important role of OC as a nutrient 
source and its influence on soil fertility and the C 
cycle. TN was positively correlated with C/P and 
N/P, and negatively correlated with TP, indicating 
that the difference of TN and TP contents would 
affect soil fertility and plant growth. The 
interactions between C, N, and P ecological 
stoichiometric characteristics collectively 
affected soil fertility and nutrient availability. The 
stoichiometric ratios provided insights into 

nutrient imbalances and could guide nutrient 
management practices in cultivated land [30, 31]. 
 
Spatial autocorrelation analysis 
Spatial autocorrelation analysis of soil nutrients 
and ecological stoichiometric ratios in cultivated 
land in Xining was conducted by using GeoDa 
software. The results revealed positive global 
Moran's I values for SOC, TN, and TP (Figure 2), 
which were mainly distributed in the first and 
third quadrants, indicating a clustering pattern of 
"high-high" and "low-low" for these soil 
nutrients. The analysis demonstrated that the 
spatial distribution of SOC, TN, and TP in 
cultivated land exhibited adjacent characteristics 
in areas with high and low values, which 
suggested that certain regions within Xining had 
consistently high or low levels of these soil 
nutrients. Furthermore, the global Moran's I of 
the ecological stoichiometric ratios of soil 
nutrients in cultivated land was also positive with 
a similar distribution pattern in the first and third 
quadrants, which indicated that the ecological 
stoichiometric ratios exhibited adjacent 
characteristics in the study area's low-value and 
high-value regions. 
 
Spatial distribution pattern 
By using the ordinary Kriging method in the 
statistical analysis module of ArcGIS software to 
carry out spatial interpolation, the spatial 
variation characteristics of cultivated soil in 
Xining were directly captured. The resulting 
horizontal spatial distribution maps of SOC, TP, 
TN, C/N, C/P, and N/P in the 0 - 20 cm soil layer 
were shown in Figure 3. The spatial distribution 
pattern of soil nutrients and ecological 
stoichiometric ratios exhibited noticeable 
variations across the study area. SOC displayed a 
bipolar distribution trend with slightly higher 
values in the north and south and lower values in 
the central region. TN followed a similar 
distribution trend to SOC although the higher 
values were not as widespread. The southern 
region exhibited higher TP content, while the 
northern region generally had lower TP levels. 
Moreover, the soil ecological stoichiometric ratio 
of   cultivated   land   showed   a   gradual   increase 



Journal of Biotech Research [ISSN: 1944-3285] 2023; 15:75-86 

 

82 

 

 
 
Figure 2. Scatterplot of the global Moran’s I of soil nutrients. 

 
 

 
 
Figure 3. Spatial distribution characteristics of soil nutrient indexes. 
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Figure 4. Correlation analysis between SOC, TN, TP, and ecological stoichiometric characteristics. 

 
 
from south to north, the distribution trend was 
consistent with TN. These findings demonstrated 
an overall difference from south to north with a 
gradual increase from south to north, consistent 
with the TN distribution trend and provided 
valuable insights into the spatial patterns of soil 
nutrients and ecological stoichiometry in Xining, 
highlighting distinct regional variations and the 
importance of considering both spatial and 
stoichiometric characteristics for effective land 
management. Soil properties, land use practices, 
and environmental conditions could influence 
these spatial distribution patterns [32-34]. The 
variations observed highlighted the importance 
of considering spatial heterogeneity when 
implementing soil nutrient management 
strategies in the study area [35].  
 
Relationship between soil stoichiometric ratio 
and soil C, N, and P 
The results of the Pearson linear correlation 
analysis conducted using SPSS software were 
presented in Figure 4. SOC showed a significant 
positive correlation with TN, C/N, C/P, and N/P (P 

< 0.01). SOC also had a significant negative 
correlation with TP at a confidence level (P < 
0.05). The results suggested that SOC, derived 
from plant and animal residues and soil parent 
material, was crucial in supplementing other 
nutrient indexes, leading to significant 
correlations. Furthermore, soil TN exhibited a 
significant positive correlation with C/P and N/P 
(P < 0.01), while it showed a significant negative 
correlation with TP (P < 0.01). Similarly, soil TP 
was negatively correlated with C/P and N/P (P < 
0.01). These findings indicated that TN and TP 
content variations could inhibit soil fertility, 
influencing vegetation growth and development. 
Similarly, the ecological stoichiometric 
characteristics of C/N, C/P, and N/P all 
demonstrated significant positive correlations (P 
< 0.01), which suggested that the interplay 
between C, N, and P ratios collectively influenced 
and restricted soil fertility and plant growth. By 
presenting these correlation results, we could 
observe the interrelationships between soil 
nutrient parameters and their implications for 
soil fertility and plant development. 
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Limitations of the study 
This study focused only on the cultivated land of 
Xining, Qinghai, China, which might not 
comprehensively represent the nutrient 
characteristics and spatial variability of other 
land types or regions. The findings might not 
apply to different soil types or land uses. 
Furthermore, the analysis was limited to surface 
soil (0 - 20 cm) and did not consider deeper soil 
layers. Nutrient distribution patterns and 
variability at deeper depths could provide 
additional insights into soil fertility and nutrient 
availability. Also, the study did not investigate the 
underlying causes and mechanisms driving the 
observed spatial patterns and correlations. 
Further research is needed to explore the factors 
such as soil hydrothermal conditions, vegetation 
cover, land management practices, and 
agricultural activities contributing to nutrient 
variability in the study area [36]. Moreover, the 
study might have yet to capture temporal 
variability in soil nutrient levels and distribution 
patterns. Soil nutrient dynamics could vary 
throughout the year due to seasonal changes, 
crop rotation, and management practices [37]. 
Long-term monitoring and analysis would 
provide a more comprehensive understanding of 
nutrient variations [38]. 
 
Prospects and recommendations 
Conducting detailed studies to understand the 
factors driving the observed spatial patterns and 
correlations of this study would provide valuable 
insights, which could involve investigating the 
effects of specific environmental factors, land 
management practices, and agricultural activities 
on soil nutrient distribution and stoichiometric 
ratios [39-41]. Extending the analysis to include a 
larger spatial scale and different land uses would 
help understand regional soil nutrient variability 
patterns and would be beneficial to assess 
nutrient characteristics in various land types 
including croplands, grasslands, forests, and 
wetlands to capture the full range of ecological 
and agricultural systems [42]. Implementing 
long-term monitoring programs to track changes 
in soil nutrient levels and distribution patterns 
over time would provide valuable data for 

sustainable land management and would help 
identify trends, assess the impacts of land use 
practices, and guide nutrient management 
strategies. Based on the findings of this study, 
there is a need to develop targeted nutrient 
management strategies to address nutrient 
imbalances and optimize nutrient availability in 
the study area. These strategies should consider 
specific soil properties, crop requirements, and 
environmental conditions to enhance soil fertility 
and promote sustainable agricultural practices 
[43]. Involving local farmers, land managers, and 
policymakers in the research process and 
disseminating findings could facilitate the 
adoption of appropriate nutrient management 
practices. Collaboration with stakeholders would 
ensure that research outcomes were practical, 
relevant, and effectively implemented. By 
addressing these limitations and pursuing the 
recommended prospects, a more comprehensive 
understanding of soil nutrient variability and 
management strategies could be achieved, 
leading to improved soil fertility and sustainable 
land use practices in the study area and beyond. 
 
 

Conclusion 
 
This study provided crucial insights into soil 
nutrient characterization and distribution in 
Xining, Qinghai, China. C, N, and P emerged as key 
indicators of soil nutrient status. The results 
revealed that N primarily limited the 
stoichiometric ecological characteristics of 
cultivated soil, as indicated by its smaller 
variation coefficient than other indices. The 
spatial variation of TN and SOC resulted from 
random and structural factors, while other soil 
indices were influenced mainly by structural 
factors. Spatial autocorrelation analysis indicated 
clustering patterns for SOC, TN, TP, and 
ecological stoichiometric ratios, showing a north-
south differentiation. The study highlighted the 
scarcity of SOC and TN resources in Xining. 
Effective land management practices tailored to 
local conditions were essential for ecosystem 
protection. Recommended measures based on 
spatial distribution patterns included air sowing, 
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sealing, soil and water conservation, grazing 
prohibition, management, and rotational 
practices in suitable grassland areas. This study 
contributed valuable information for 
understanding soil nutrient variation and 
distribution, emphasizing the importance of 
sustainable land management and targeted 
interventions to preserve and enhance soil 
nutrient resources in the region. 
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