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Problems in intelligent farming include soil erosion, pests, diseases, etc. Population intelligence optimization 
algorithms have a wide range of application prospects in farming environments. While in practical applications, 
there are problems such as vulnerability to disturbance, tendency to fall into local optimization, and lack of 
accuracy. Thus, in this study, the Moth Flame Optimization (MFO), Grey Wolf Algorithm (GWO), and Integrated 
Particle Algorithm (PSO) were combined with improved algorithms for optimization. The Sine Cosine Strategy 
(SCS) was used to promote the MFO algorithm and was adopted for the land erosion prediction problem based 
on the Kernel-Based Extreme Learning Machine (KELM) algorithm. The multi-strategy mechanism was used to 
improve the GWO as a basis for designing an accurate fertilization model. The traditional PSO algorithm was 
improved by applying elite augmentation and applied to the segmentation of maize disease images. The results 
showed that the improvement of SMFO-KELM for KELM effectively improved the prediction ability of soil erosion 
classification. In intelligent agriculture, the performance of multi-strategy GWO was distinctly better than other 
improved algorithms. In contrast to traditional PSO algorithm, the structure similarity index of the elite enhanced 
PSO algorithm was improved from 0.88 to 0.95, and the feature similarity index was improved from 0.72 to 0.86 
and could obtain better segmentation accuracy than other similar algorithms in solving the overall effect of multi-
threshold segmentation for maize rust spot disease. The accuracy of the population intelligence algorithm was 
improved, and the problem of interference was solved. The use of the population intelligence optimization 
algorithm realized real-time monitoring and intelligent management of the corn field environment, including the 
monitoring and regulation of soil moisture, temperature, nutrient status, and other parameters to promote the 
growth and development of maize and improve the yield and quality of maize, which helped to promote the 
development of intelligent agriculture and realize the refinement and intelligent management of the agricultural 
production process. 
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Introduction 
 
In agroecosystems, the mainstay is crops, and 
maize is a widely grown crop worldwide [1]. With 
the development of computer information 
technology, smart agriculture has been widely 
used and the core technology of smart 

agriculture is information technology for modern 
agricultural production [2-4]. In the case of maize 
cultivation, for example, many issues need close 
attention during the growth of maize. Examples 
include monitoring the environment in silt fields 
to classify and predict land infestation, analyzing 
the amount of fertilizer applied to different 
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plants, and monitoring and analyzing diseases in 
maize [5]. The Moth Flame Optimization (MFO) 
algorithm, first proposed by Mirjalili and inspired 
by learning the special positioning navigation 
mechanism of moths during flight, is a new 
population intelligence optimization algorithm 
proposed in 2015. The algorithms are optimized 
using intelligent technology to analyze and solve 
the problems faced by land environment 
monitoring. The main problems of land 
environment monitoring are the impact of soil 
erosion on maize plants, the deterioration of land 
conditions due to unregulated fertilizer use, and 
the impact of diseases and pests on maize yields 
[6, 7]. The existing population intelligence 
algorithms are not accurate enough to solve 
these problems and are susceptible to 
disturbances and tend to fall into local 
optimization [8]. To address specific challenges, 
the MFO algorithm is enhanced with the positive 
cosine strategy for improved performance in the 
health control of land environments using the 
Kernel-Based Extreme Learning Machine (KELM) 
algorithm. Additionally, a multi-strategy 
mechanism (SLE) is employed to enhance the 
Integrated Particle Algorithm (PSO) for maize 
disease image segmentation, resulting in the 
development of an elite enhanced PSO. 
 
Currently, the main research method adopted is 
the intelligent optimization algorithm, and the 
research object is the sensor detection problem. 
With the development of the times, group 
intelligence algorithms have become more 
mature. Shaikh et al. used Grey Wolf Algorithm 
(GWO) to optimize the calculation of parameters 
for transmission lines during their research on 
power systems. This algorithm not only 
accurately found the optimal solution for the 
parameters, but also analyzed the influence of 
various styles of conductors on the transmission 
line. The results showed that this algorithm was 
more stable and converges faster [9]. Karaoglan 
addressed the problem that different extrusion 
processes had different degrees of impact on 
product quality by building a model based on the 
GWO algorithm, expecting this model to analyze 
the factors that caused inconsistent product 

quality to achieve cost control and improve 
product quality [10]. Abbassi et al. designed an 
economic evaluation system to optimize the size 
of a renewable energy system, combining the 
model with the moth flame algorithm. The 
results showed that this model could provide a 
detailed analysis of the scale problem, provide 
solutions, and achieve cost control [11]. 
Mortazavi et al. proposed an improvement to the 
knowledge-sharing structure that built upon the 
PSO approach. Their research method not only 
tracked the interaction domain but also 
incorporated the selection of the search domain. 
Validation experiments of the method showed 
that the structure of the research method was 
more comprehensive and competitive compared 
to traditional algorithms [12]. Sun et al. 
optimized the overall arrangement of the kitchen 
based on the PSO for the layout and cooking 
efficiency of the kitchen, expecting to make the 
kitchen layout more rational and bring better 
usage experience. The results showed that the 
research design approach effectively improved 
the space utilization of the kitchen, resulting in a 
more rational layout [13]. Zhao et al. optimized 
the sensitivity of the sensor based on a 
population intelligence algorithm and showed 
that the research method not only improved the 
sensitivity of the sensor by 0.55% but also 
automatically optimized it for use in all types of 
sensors [14]. Wang et al. proposed a new 
approach to sensor fault detection and automatic 
correction based on traditional sensors. The 
method utilized intelligent population 
optimization algorithms to enable local coupling 
between all intelligent nodes to assist in the 
monitoring and correction of sensor faults. The 
results showed that the research method raised 
the sensor detection accuracy and effectively 
detected faults and corrected them in time [15]. 
Cervantes-Castillo et al. put forward a novel 
manner to raise the computational power of the 
population intelligence algorithm by combining 
an improved brainstorming optimization 
algorithm with the constrained consistency 
method. This proposal computed the consistency 
vector by sequentially addressing the hardest 
constraint of the current infeasible solution, thus 
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eliminating the need for mixing other feasible 
vectors. The study suggested that, when 
compared to state-of-the-art algorithms, adding 
special operators to enhance the abilities of 
population intelligence algorithms was feasible 
[16]. The problem of environmental monitoring 
has also received extensive scholarly control 
recently, and Alobaidi and Valyrakis designed a 
sensor for the problem of monitoring in the 
direction of environmental topography, ecology, 
and water resources in the expectation of 
effective monitoring of the environment. Firstly, 
micro-particles were designed and developed to 
be embedded in the micro-sensor. The sensor 
was then calibrated using physical methods to 
estimate the errors of the sensor. Then, physical 
evaluation experiments were designed to 
validate and evaluate the designed sensor. The 
results showed that the sensors had low errors 
and could sense and monitor small 
environmental changes accurately [17]. Stahl et 
al. discovered that satellite imagery could be 
leveraged to address data gaps in the field of 
environmental monitoring. The study made full 
use of image information to improve 
environmental monitoring models and found 
that effective use of imagery could make 
environmental monitoring models more 
sensitive and stable [18]. 
 
The population intelligence algorithms are 
relatively well-developed and have been used to 
varying degrees in various fields. Since less 
research has been carried out in the field of 
environmental monitoring, this study combined 
population intelligence optimization algorithms 
to investigate the environmental monitoring 
problem in maize fields and apply intelligent 
optimization algorithms to practical agricultural 
problems and more widely in the construction of 
intelligent agriculture. 
 
 

Materials and Methods 
 

The SCS Moth Flame Algorithm (SMFO) and its 
optimization algorithm model 

SMFO is an enhanced algorithm that 
incorporates the Moth Flame algorithm to 
improve its performance by addressing issues 
such as a simple structure, susceptibility to 
interference from pool exploration problems, 
and the tendency to get stuck in local 
optimization encountered in the MFO algorithm. 
All experiments in this study were performed on 
a computer equipped with a 3.40 GHz Intel® Core 
i7 processor and 16 GB of memory, encoded 
using Matlab2018b. The SCA strategy was 
introduced into the MFO algorithm to provide a 
set of random solutions for the moth positions at 
update time, which would explore the region 
outside the space when the return values of the 
SCS were not in the region [-1, 1], and searched 
for the best position in the region when the 
return values were in the region [-1, 1]. The SCA 
algorithm, SCS, exhibited a range of adaptation 
from smoothing to exploitation with a high 
probability that the optimal solution laid in the 
vicinity of the previously obtained optimal 
solution. Therefore, the optimization process 
performed a focused search for the best region 
of space. The individual states were updated as 
shown in equation (1). 
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where t

iX
r

 was the solution of the current 

solution in the t -th iteration in the i  dimension. 
t

iP
r

 was the destination of the optimal solution in 

the t -th iteration in the i  dimension, and  

was the absolute value. 
1r  was determines 

whether the next position was explored within 
the destination and could enhance the global 
exploration capability of the MFO algorithm. 

2r  

defined the next unknown update step. 
3r  was a 

random weight where the data range 
determined the ability of the target destination 
to influence the current solution. 

4r  was the 

probability value for a random switch by the 
positive cosine mechanism. To balance the 
relationship  between  the  exploration  and being 
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Figure 1. SMFO algorithm flowchart. 

 
 
explored, the exploration converged gradually to 
the optimal solution with the expression shown 
in equation (2). 
 

1

a
r a t

T
= −        (2) 

 
where t  was current iteration and T  was the 

max amount of iteration. a  was a constant of 2. 
The SMFO algorithm, obtained by adding the SCA 
algorithm for improvement, raised the global 
exploration ability of MFO and ensured the local 
optimal solution’s accuracy (Figure 1). The 
improved SMFO’s time complexity was related to 
the number of iterations. The parallel 
optimization capability of the MFO algorithm was 
very strong. The MFO algorithm could search 
extensively for globally optimal regions in space. 
The flame in the MFO algorithm was the best 
position reached by the moth, which was placed 
in the matrix F and the fitness value of the flame 
was placed in the array OF. With the flame locus, 
the moth renewed its position as shown in 
equation (3). 
 

( , )t i jM S M F=
r

       (3) 

 

where iM
uur

 was the i -th moth. tM
uur

 was the 
position that could fly in one or more dimensions 
of the allowed region. jF

 
was the j -th flame 

and S  indicated the spiral function. The flight 
path was the range of solutions, and the 
coordinates of its position were the solutions 
that existed as shown in equation (4). 
 

( )cos 2bt
t t jM D e t F=    +

uur uur uur
       (4) 

 
where jF  was the j -th moth. b  was the 

logarithmic spiral shape constant. t  ranged from 

-1 to 1, and 
tD

uur
 was the length from the i -th 

moth to the j -th flame as expressed in equation 

(5). 
 

t j tD F M= −
uur uur uur

      (5) 

 
where t  was the step size of the moth's defective 
flight. The moth position defined in equation (4) 
had    limitations    that    could    lead    the    MFO  
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Figure 2. Schematic diagram of KELM structure. 

 
 
algorithm to be involved in local optima. The 
flames were updated adaptively to solve this 
problem, and the quantity of flames was 
decreased incrementally to reduce the 
calculation time and improve operational 
efficiency. The flame update expression was 
shown in equation (6). 
 

1
( * )no

N
flame round N k

T

−
= −        (6) 

 
where N  was the maximum number of flames. 
k  and T  represented the current and the 
maximum number of iterations, respectively. 
When iteration ended, the best moth position 
when the condition was satisfied was determined 
as the best return value obtained. The Extreme 
Learning Machine (ELM) algorithm, implemented 
as a kernel with the K function, was defined as a 
kernel limit learning machine, which was an 
improvement on the ELF algorithm to give it 
more stable performance and generalization 
capability. The structure of the KELM was shown 

in Figure 2. The K function mentioned in the study 
was a kernel function. For the output function 
was expressed in equation (7). 
 

1 1
( , )

( ) ( )
( , )

T

EML

N

K x x I
f x T

K x x C

−
 

= + 
 

     (7) 

 
The kernel function for KELM was the Gaussian 
kernel function, which was shown in equation (8). 
 

2
( , ) exp( )K u u = − − −        (8) 

 
The KELM algorithm is a fast learner and has 
generalization ability [19, 20]. Therefore, it has 
been used extensively to solve parameter 
optimization and model prediction. In this study, 
the SNFO algorithm was combined with the KELM 
algorithm to address the problem of soil erosion 
classification prediction in maize fields and to 
improve its accuracy. The SMFO-KELMD soil 
erosion prediction model was shown in Figure 3. 
Faced with the problem of classifying and 
predicting   soil   erosion,   the   penalized,   kernel  
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Figure 3. Flow chart of SMFO-KELMD based soil erosion prediction model. 

 
 
parameters in SMFO-KELMD were used to 
accurately classify the soil erosion problem. In 
Figure 3, it acted on the model optimization and 
classification evaluation process. To obtain 
accurate and error-free results, the performance 
of the classifier was evaluated using the 
crossover method when validating the 
classification evaluation model by dividing the 
data into ten random groups. Nine of which were 
chosen to be training set and the rest one to be 
test set. The final evaluation metrics included 
accuracy, Mathew’s correlation coefficient, 
sensitivity, and specificity. Because the samples 
were randomly selected, the ten cross-tests did 
not reflect whether the classification was correct 
or not. So, based on this, ten times ten cross-
validations were performed for all methods, and 
the resulting values were finally selected and 
averaged for the final evaluation result. 

Improved multi-strategy mechanism grey wolf 
algorithm (SLEGWO) precision fertilization 
model and elite enhanced integrated particle 
algorithm (GCLPSO) 
SLEGWO was built on the foundation of the 
GWO, obtained by combining the SMA, LF, OBL, 
and GS strategies, which could be well applied to 
optimally solve the nutrient constant equation 
coefficients of the fertilizer effect equation and 
improve the model over-fitting effect of fertilizer 
application to predict the best fertilizer 
application ratio and maximum yield. The 
hierarchy of the GWO was shown in Figure 4. 
GWO was introduced in 2014 after studying the 
hierarchy and hunting strategies of wild grey 
wolves. Wolves were classified into four classes 
according to their strength including alpha ( ), 

beta (  ), delta (  ), omega (  ) and the best 
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wolves were  ,  , and  , helping other wolves 
to explore a more favorable survival space. The 
behavior of wolves to identify prey to surround 
them corresponded to GWO as shown in 
equation (9). 
 
 









 
 
Figure 4. The hierarchical system of grey wolves. 
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where A

ur
 and C

ur
 were the coefficient vectors. 

pX
uur

 was the prey position vector and X
uur

 was the 

grey wolf position vector. The expressions for A
ur

 

and C
ur

 were shown in equation (10). 
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As the iteration continued to increase, a

r
 

decreased from 2 to 0. 
1r
ur

 and 
2r
ur

 were in the 

interval [0, 1]. The hunt was led by   wolves, and 
the wolves were ranked from high to low as  , 

 , and   played the role of assisting   to 

determine the location of the wolves, giving 
instructions to   to implement the hunting 
action. The hunting process was described by the 
expression of equation (11). 
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X
uur

 was calculated as shown in equation (12). 
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The mean value of ( 1)X t +
uur

 was shown in 

equation (13). 

1 2 3
( 1)

3

X X X
X t

+ +
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    (13) 

 
The GWO algorithm is widely used in practical 
problems due to its advantages of simple 
parameters, fast convergence, and easy 
implementation. In the face of the gradual 
increase in spatial dimensionality, the 
convergence speed (CS) of the GWO has turned 
slower. To accelerate the CS and not drop into 
local optimum, the GWO is improved and 
optimized using a multi-strategy mechanism, 
which consists of the following strategies of 
reverse learning strategy, slime foraging strategy, 
Levi's flight strategy, and greedy selection 
strategy. The greedy selection strategy selected 
the optimal position from mucus foraging and 
Levi's flight strategy maintained the optimal 
solution of SLEGWO and removed other 
solutions. The expression for the greedy selection 
evaluation function was shown in equation (14). 
 

( ), ( ( )) ( )

( ), ( ( )) ( )

SMA SMA levy

levy levy SMA

X t f X t X t

X t f X t X t

 




uur uur uur

uur uur uur     (14) 

 
Therefore, the improvement of GWO was 
SLEGWO, and the algorithm flow chart for 
SLEGWO was shown in Figure 5. The SLWGWO 
algorithm was applied to the problem of 
precision    fertilization    of    maize    fields,    i.e. 
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Figure 5. Algorithm flowchart of SLEGWO. 
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Figure 6. Flow Chart of SLEGEO-NPK precision fertilization method. 

 
 
monitoring the soil environment and analyzing 
soil conditions for targeted fertilization. The 
SLWGWO precision fertilization model was fitted 

by the algorithm to the fertilizer effect function 
and the obtained function model was used to 
predict the fertilizer application rate and to 
estimate the maximum value of yield. The 
proposed SLWGWO algorithm IR was chosen to 
be fitted to other algorithms to obtain equation 
coefficients for the fertilizer effect ambiguity, 
and the SLWGWO algorithm for the NPK ternary 
fertilizer effect function precision fertilizer 
application route was shown in Figure 6. 
 
In addition to fertilizer application, crop disease 
control is also critical, and the classification and 
diagnosis of crop diseases is an important need in 
the field of smart agriculture. Traditional 
identification of diseases mainly relies on manual 
identification, which is influenced by the 
instability of experience and is costly. With the 
development of computer images, the use of 
algorithms for real-time monitoring of maize and 
timely diagnosis of crops can raise the accuracy 
of judgment and reduce the cost of diagnosis and 
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Figure 7. Box graph of KELM model combining SMFO-KELM with Original algorithm. 

 
 
the economic loss of crops. It was performed for 
the velocity update term in the classical PSO, 
replacing its historical optimal term with a new 
integrated learning factor. If the number of stalls 
of a particle exceeded a threshold, another 
integrated learning factor needed to be 
generated for that particle in the past. The 
composite learning factor would select the better 
of the two random particles, and the best particle 
and the random learning probability were 
combined to obtain the composite learning 
factor, so the algorithm would still have a local 
optimal solution problem. Based on the CLPSO 
algorithm, the GWO was introduced to select the 
leading wolf strategy to obtain three locally 

optimal solutions,  ,  , for the alternative elite 

optimal solutions. 
 
 

Results and discussion 
 

Application of SMFO-KELM algorithm for land 
erosion classification and validation of the 
SLEGWO precision fertilizer application model 
Taking the corn experimental field in Suihua City 
Heilongjiang Province, China as the experimental 
site for this study, the soil data used for the 
experiments came from a cornfield area where 
soil erosion was heavily influenced by heavy 
rainfall, so the area was used for the experiments 
in a more comparable way. The commonly used 
factors in agriculture to represent soil erosion 
included 10 influencing factors as EI30, slope 
degree, OC topsoil, pH topsoil, bulk density, 
topsoil porosity, soil fraction, clay fraction, sand 
fraction, and soil cover rate, and were named as 

1X , 2X , 3X , 4X , 5X , 6X , 7X , 8X , 9X , and 

10X  with the average values of 135.27, 28.37, 

1.93, 5.85, 1.40, 53.02, 35.07, 30.25, 36.33, and 
53.66, respectively. To guarantee the fairness 
and validity of the experiments, comparisons 
among   the   algorithms   were   made  under  the  
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Figure 8. Histogram of SMFO-KELM model and comparison model. 

 
 
same conditions. The effect of random conditions 
was decreased by testing all algorithms 30 times 
individually. Population size and maximum value 
were set to 20 and 100, respectively. SMFO-KELM 
was compared to the six classical original 
optimization algorithms including MVO-KELM, 
MFO-KELM, BA-KELM, GSA-KELM, WOA-KELM, 
and GOA-KELM in terms of 236 sets of 2 
classifications consisting of 10 influencing 
factors. The results were expressed in ACC, MCC, 
sensitivity, and specificity (Figure 7), where ACC, 
MCC, sensitivity, and specificity showed the best 
behavior in SMFO-KELM, which indicated that 
SMFO-KELM was the best and most accurate 
algorithm among the five categories (Figure 8). 
SMFO-KELM generally outperformed the 
competing models compared to the traditional 
method due to the highest optimization 
capability of the SMFO optimizer used. One of 
the worst-performing models was BA-KELM. To 
test the reliability, statistical results, and 
robustness used in addressing the global 
optimality of the soil classification prediction 
problem significantly better than other 
algorithms, the study used the KELM with superb 
learning and generalization capabilities in 

combination with SMFO to predict the soil 
erosion classification problem. The results 
showed that the KELM classifier based on the 
SMFO algorithm outperformed other classifiers 
in four performance metrics and SMFO-KELM 
was an improvement on KELM that effectively 
improved the prediction of soil erosion 
classification. 
 
SLEGWO was compared with 11 well-known 
optimizers competing algorithms including WOA, 
GWO, MFO, SCA, SSA, MVO, IGWO, RWGWO, 
MEGWO, CAGWO, and HGWO. The results were 
shown in Table 1. SLEGWO ranked first and best 
among the 11 compared algorithms with the 
Friedman test. The mean value represents the 
result of the mean fitness obtained from the 
Freidman test analysis. The smaller the mean 
value, the better the effectiveness, which was 
significantly better than other improved 
algorithms. In the SLEGWO precision fertilizer 
model validation experiment, SLEGWO was used 
to explore the maximum value of the above three 
fertilizer effect function models. The objective 
function was the residual of the fertilizer effect 
function    with    dimension  3.    The    maximum  
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Table 1. Mean and standard deviation. 
 

Function Rank Mean +/-/= 

SLEGWO 1 2.3887 - 
IGWO 5 6.2547 23/4/3 
HGWO 9 6.9530 22/3/3 
MEGWO 2 4.2105 23/6/3 
CAGWO 6 6.3558 23/4/3 
RWGWO 3 5.6002 25/4/0 
GWO 7 6.7035 25/4/3 
MVO 10 7.8023 24/4/3 
WOA 4 5.6034 21/6/3 
SCA 12 10.2350 27/1/1 
SSA 8 6.7036 25/5/0 
MFO 11 8.3805 27/2/1 

 
 
Table 2. Mean and standard deviation. 
 

2/kg hm  SLEGWO GWO ABC BA SSA PSO WOA 

Nitrogen 253.1575 233.774 234.2765 234.2635 234.2372 234.2578 234.5402 
Phosphorus 107.2683 103.514 104.3582 103.5417 103.4510 103.4402 103.430 
Potassium 108.3251 98.383 97.3255 98.0245 97.035 96.758 96.258 
Maximum output 8995.853 8868.254 8878.351 8878.351 8878.351 8878.351 8878.351 

 
 
number of iterations was 50,000 and the 
population size was 30. The minimum values of 
the maximum crop yield and the corresponding 
NPK fertilizer application with SLEGWO and other 
six algorithm models were shown in Table 2. The 
results obtained by other comparison methods 
were all around 8,868 – 8,995 kilograms per 
hectare. When the SLEGWO ratio of nitrogen / 
phosphorus / potassium in the fertilization 
expression was 253.1575 / 107.2683 / 108.3251 
kg/hm2, the estimated yield of the Nong'an corn 
experimental field was 8,995.853 kg/hm2. The 
range of fertilization amount was within the 
range of reasonable fertilization, and the yield 
had increased by 127.599 kilograms per hectare 
compared to the second-ranked GWO algorithm. 
The results proved the superiority of the SLEGWO 
method over other comparative algorithm 
models in finding the fertilizer effect function. 
 
The population intelligence optimization 
algorithm has the merits of having the internal 
constructs encapsulated and better portability in 
the maximum yield obtained compared to 

traditional methods. The put-forward algorithm 
GCLPSO was compared with 15 other 
comparative algorithms at CEC2017 with the 
function choice of unimodal function C1 and 
combined function C30 and the results were 
shown in Figure 9. The accuracy and CS of the 
GCLPSO function were higher than the other 
algorithms in the unimodal C1 function. In the 
C30 function, as the iterative process progressed, 
the CS in the early stages was slower than the 
other algorithms, and a significant improvement 
in accuracy occurred in the later stages. Thus, the 
outcomes obtained from the comparison of 
observations in Figure 9 showed that the GCLPSO 
algorithm achieved the best fitness values on 
most of the benchmark functions, and the 
GCLPSO algorithm had a clear advantage in C1 
and C2. The study proposed GCLPSO with the 
elite incremental strategy, using GCL to raise the 
CS and accuracy of image segmentation. GCLPSO 
was built on the ground of PSO, and the 
integrated learning strategy was chosen to 
improve it. 
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Figure 9. Comparison of convergence curves between GCLPSO and classical and other advanced algorithms.  
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Figure 10. Comparison of performance between CLPSO algorithm and GCLPSO algorithm. 

 
 
GCLPSO for disease image segmentation 
In this study, GCLPSO was used for multi-
threshold segmentation (MS) of maize disease. 
To verify the performance of GCLPSO on MS, it 
was compared with the original CLPSO and the 
improved GCLPSO algorithm, respectively. The 
segmented results were evaluated using the 
feature and structural similarity index and peak 
signal-to-noise ratio (PSNR) (Figure 10). The 
results demonstrated that the feature similarity 
index, PSNR, and structural similarity index were 
all obviously raised with the highest accuracy 
being the structural similarity index, which rose 
from 0.88 to 0.95. The feature similarity index 

and the PSNR also increased from 0.72 to 0.86 
and 0.80 to 0.91, respectively. It was verified that 
the proposed GCLPSO algorithm was able to 
achieve better overall segmentation accuracy in 
solving the MS of maize rust than the previous 
algorithm. It was verified that the put-forward 
GCLPSO algorithm could realize better 
segmentation accuracy than the previous 
algorithm in solving the overall effect of MS of 
maize rust spot disease. 
 
 

Conclusion 
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In the face of all the problems in intelligent 
agriculture, population intelligence optimization 
has a broad application foreground, while in 
practice there are problems such as susceptibility 
to interference, being easy to drop into local 
optimization, and insufficient accuracy. This 
research focused on enhancing and optimizing 
the MFO, GWO, and PSO algorithms. The MFO 
algorithm was improved using the positive cosine 
strategy to address land erosion prediction based 
on the ELF algorithm. The GWO algorithm was 
enhanced using SLE and utilized in designing an 
accurate fertilizer application model for 
intelligent agriculture. The PSO algorithm was 
improved using GCLP and applied to maize 
disease image segmentation. The results 
demonstrated that SMFO-KELM significantly 
improved the prediction ability of soil erosion 
classification. SLEGWO outperformed other 
improved algorithms, and GCLPSO achieved 
superior segmentation accuracy in addressing 
maize rust spot disease in MS. The application 
accuracy of these improved population 
intelligence algorithms was enhanced, 
overcoming vulnerability to interference. 
However, there are still shortcomings in the 
improved population intelligence optimization 
algorithm. As smart agriculture is complex and 
diverse, solving its problems requires the 
integration of multiple factors, for example, in 
the precision fertilizer model, analogous 
experiments can be carried out by increasing the 
type of fertilizer. 
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