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Ultrasound imaging is widely used in clinical diagnoses because of its nonionizing radiation, low cost, and 

noninvasive operation. However, making a diagnosis based on ultrasound images is a labor-intensive process. An 
accurate lesion classification system can thus be used to assist doctors in making diagnoses. The performance of 
classification algorithms typically improves when they are trained on large, labeled datasets. However, collecting 
labeled data is an expensive and time-consuming task. Therefore, performing lesion classification via ultrasound 
images is still challenging due to the small number of available training samples. To address this issue, a data 
augmentation method for ultrasound images based on a conditional generative adversarial network was 
proposed in this study to perform lesion classification. A real image was input into the generative adversarial 
network to constrain the mapping between the images. Then, the data augmentation process based on the 
conditional generative adversarial network generated the corresponding segmentation masks by category. 
Considering that the data augmentation method based on affine transformation can generate only fake 
ultrasound images or segmentation masks separately, this study proposed to use image-to-image translation to 
generate fake ultrasound images from the corresponding segmentation masks. The ResNet-50 was used to classify 
benign and malignant lesions to validate the effectiveness of the proposed approach. The results showed that, by 
comparing to the traditional data augmentation method based on affine transformation in terms of four 
evaluation metrics, the average performances of the proposed method increased by approximately 13.05% and 
12.85% for the classification of lesions in the segmented masks and ultrasound images of lymph nodes and breasts, 
respectively. The results suggested that the proposed method could realize the purpose of data augmentation 
and greatly improve the classification performance. 
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Introduction 
 
Ultrasound imaging is widely used in clinical 
diagnoses because of its nonionizing radiation, 
low cost, and noninvasive and comfortable 
operation, but the diagnostic results depend 

primarily on the ability of the doctor to interpret 
ultrasound images, and making a diagnosis based 
on ultrasound images is a labor-intensive 
process. An accurate, reliable, and effective 
lesion classification system can thus be used to 
assist doctors in making diagnoses. The 
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conventional lesion classification system utilizes 
machine learning (ML) to analyze the features of 
ultrasound images and then uses a classifier to 
diagnose diseases. The key foundation of this 
application is the extraction of features from 
ultrasound images, but this process needs to be 
completed by medical experts in the relevant 
research field [1]. Accordingly, it is quite 
challenging for nonmedical experts to conduct 
relevant research in the field of ultrasound 
imaging via ML. 
 
The rapid development of deep learning has 
resulted in its widespread use for classifying 
lesions in medical images. These lesion 
classification algorithms based on deep learning 
can extract additional medical image features 
through convolutional neural networks (CNNs) 
[2]. Nonetheless, due to the poor quality of 
ultrasound images and the inhomogeneity of 
human tissues, performing lesion classification 
on ultrasound images is relatively difficult. 
Although the signal-to-noise ratios, contrast 
levels, and denoising effects of ultrasound 
images have improved in recent years, it is still 
challenging to classify lesions in ultrasound 
images. One important reason for this challenge 
is that the number of available training samples 
is small. Due to the confidentiality of patient 
privacy, collecting many ultrasound images is 
difficult. Furthermore, it takes much time and 
effort for radiologists to annotate ultrasound 
images [3]. To solve this problem, several 
scholars have proposed data augmentation 
methods. These techniques have proven to be 
very effective and are widely used in the field of 
medical image analysis. The existing image data 
augmentation methods can be divided into two 
broad categories including traditional methods 
based on affine transformation and black-box 
methods based on deep learning [4]. Traditional 
data augmentation methods for medical images 
use a combination of affine transformations 
including flipping, rotation, zooming in/out, 
reflection, and shearing to generate fake image 
samples. The original images and generated fake 
images are subsequently used simultaneously as 
the model datasets. The parameters of the affine 

transformation process can be preset or random. 
Affine transformation is conducted to generate 
fake images with the same semantic information 
as that contained in the associated real images 
[5]. To a certain extent, performing data 
augmentation on medical images based on affine 
transformation improves the learning efficiency 
of CNNs and prevents overfitting. However, 
different types of medical images require 
different affine transformation parameters, 
which makes the selected parameters dependent 
on researchers’ experience. Moreover, 
performing data augmentation on medical 
images based on affine transformation results in 
only small changes in the shapes of the images, 
which does not align with the disparity of medical 
images. Utilizing larger affine transformation 
parameters to create greater changes will 
substantially change the contents of medical 
images and negate the purpose of image data 
augmentation, thus having the opposite effect. 
For ultrasound images with complex imaging 
textures, the fake samples generated by affine 
transformation cannot exhibit the characteristics 
needed for clinical diagnoses [6]. Data 
augmentation technologies based on generative 
adversarial networks (GANs) are also widely used 
in the medical imaging field. GANs, inspired by 
game theory, are popular sophisticated data 
augmentation models that learn rich features 
and model high-dimensional data distributions. A 
GAN consists of a pair of competing networks. 
The generative network G generates fake image 
samples, and the discriminative network D 
continuously distinguishes between the real and 
fake images until the GAN generates high-quality 
synthetic images. Therefore, the use of a GAN has 
emerged as an effective method for addressing 
the challenges posed by limited medical image 
samples. Saman et al. proposed a data 
augmentation approach using a GAN to detect 
pneumonia in chest X-ray images, showing that 
the proposed method could be used to 
effectively improve the accuracy of disease 
diagnoses [7]. Javaid et al. used a GAN to extract 
the features of CT images to generate new fake 
CT images. The generated fake samples included 
the local and global features of the real CT images 
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[8]. Perez et al. explored and compared several 
common data augmentation methods and 
proposed a new data augmentation method 
based on deep learning to achieve improved 
classification accuracy [9]. In addition, Qin et al. 
presented a classification technique for skin 
lesions based on the data augmentation 
mechanism of a GAN [10]. 
 
Deep learning can extract the features of 
ultrasound images through successive 
convolution. However, these algorithms based 
on CNNs cannot achieve good accuracy in 
ultrasound image lesion classification scenarios. 
One important cause of this issue is the small 
number of sample ultrasound images used for 
training the algorithms. To solve this problem, 
several scholars have proposed methods based 
on data augmentation for classifying lesions in 
ultrasound images. Breast cancer is characterized 
by a malignant tumor formed by the abnormal 
division of breast ducts or lobules. Early diagnosis 
and screening can effectively reduce the 
mortality of breast cancer [11]. Clinically, the best 
screening method is pathological biopsy or 
ultrasound imaging. Al-Dhabyani et al. achieved 
improved accuracy by integrating traditional 
methods with GAN-based augmentation for the 
classification and detection of breast cancer in 
ultrasound images [12]. Gheshlaghi et al. 
increased the size of a small dataset by using an 
auxiliary GAN that generated fake images with 
their class labels and evaluated the effectiveness 
of data augmentation by performing lesion 
classification on breast ultrasound images using 
deep convolutional neural networks [13]. Wu et 
al. trained a class-conditional GAN to conduct 
contextual filling and generate lesions on healthy 
screening mammograms, and experimentally 
evaluated the use of data augmentation to 
achieve improved breast cancer classification 
performance [14]. Changes in cervical lymph 
nodes are common surgical manifestations and 
include various lymph node diseases such as 
lymph node-reactive hyperplasia, lymphoma, 
and metastasis of various neoplastic lesions. 
Determining the nature of lymph nodes is the 
most important step in the clinical diagnosis 

process. Puncturing a lymph node is a minimally 
invasive diagnostic method, but a convolutional 
neural network allows the possibility of a painless 
and rapid lymph node diagnosis [15]. 
Tekchandani et al. proposed a data 
augmentation approach based on a GAN and 
used the inception network to make benign and 
malignant diagnoses of mediastinal lymph nodes 
[16]. Wang et al. proposed a data augmentation 
method to maintain the original image resolution 
and retain the most informative parts of images 
[17]. However, these data augmentation 
methods can only generate original images or 
segmentation masks separately, and the 
performance improvement provided by these 
techniques in classification tasks is limited.  
 
To alleviate the above problems, a data 
augmentation method for ultrasound images 
based on a conditional generative adversarial 
network (cGAN) was proposed in this study to 
perform lesion classification. A cGAN was 
exploited to generate segmentation masks by 
categories under constraint mapping. 
Considering that data augmentation based on 
affine transformation can generate only fake 
ultrasound images or segmentation masks 
separately, the image-to-image translation was 
utilized to generate fake ultrasound images from 
the corresponding segmentation masks. The 
study expected that the proposed data 
augmentation method for ultrasound images 
could achieve better lesion classification 
performance than that of traditional 
augmentation methods for ultrasound images or 
segmentation masks. 
 
 

Materials and methods 
 
Data augmentation of ultrasound image 
segmentation masks based on a cGAN  
The standard GAN uses random noise as its input 
to generate fake samples that are 
indistinguishable from real samples. It includes 
two neural networks.  Generative network G is 
used to generate fake samples, and 
discriminative  network  D  is  used  to  distinguish 
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Figure 1. The architecture of ultrasound image segmentation mask data augmentation based on the cGAN.  

 
 
between the fake samples and real samples. 
These two networks compete with each other. So 
that the generative network G can generate 
samples that the discriminative network D cannot 
distinguish. The standard GAN uses unsupervised 
learning and thus cannot generate fake samples 
based on their categories. In other words, a GAN 
cannot control the models of the samples to be 
generated. Rather, it can only learn mappings 
from random noise to the samples. To effectively 
solve this problem, a cGAN that added real 
samples as inputs was proposed in this study to 
enable a targeted method of generating samples 
based on given categories. Similarly, the cGAN 
was composed of a generative network G and 
discriminative network D. During the training 
process, the cGAN used the antagonistic training 
mechanism of the generative network and 
discriminative network to achieve the joint 
optimization of both networks until the 
equilibrium state was reached [18]. The goal of 
the generative network G was to generate new 
fake samples, and the discriminative network D 
was employed to distinguish between the 
generated fake samples and the real samples. The 
architecture of the ultrasound image and 
segmentation mask data augmentation method 
based on a cGAN was shown in Figure 1. The 
inputs of the cGAN included random noise z and 
real samples xj. The generated fake samples were 
denoted as y, and the input xj was used to 
constrain the mapping between the fake samples 

and real samples. The mapping between the 
input and output was G: {x, z}→y. Its objective 
function was as follows: 

 
ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦[log 𝐷(𝑥, 𝑦)] +

𝐸𝑥,𝑧 [log (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))]                           (1)          

 
During the antagonistic training process of the 
cGAN, the generative network G tried to 
minimize the objective function, while the 
discriminative network D tried to maximize the 
objective function. This scheme could be 
represented by the following function: 
 

ℒ𝑐𝐺𝐴𝑁
∗ = 𝑎𝑟𝑔 min

𝐺
max

𝐷
ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷)               (2)   

 
The main function of the generative network was 
to generate corresponding samples by category 
under constraint mapping. Its structure was 
shown in Figure 2. Based on the traditional 
structure of the encoder-decoder network, the 
generative network was composed of a pair of 
symmetric contracting and expanding paths. The 
real samples xj constrained the mapping between 
the generative fake samples and real samples. 
These samples were taken as the inputs of the 
contracting paths and then combined with the 
feature mapping of random noise as the input of 
the expanding paths. In the architecture of the 
generative network, each encoder module 
consisted  of  three  convolutional modules and a 
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Figure 2. The architecture of the generative network. 

 
 

 
 

Figure 3. The architecture of the discriminative network. 
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downsampling module. Each convolutional 
module consisted of a successive 3 × 3 
convolutional layer, batch normalization (BN), 
and a leaky ReLU function. The three 
convolutional modules of the encoder module 
used residual connections to improve the flow of 
information, optimize the performance of the 
network, and avoid gradient vanishing during 
training. The downsampling module consisted of 
successive 3 × 3 convolutional layers with strides 
of 2, BN, and a leaky ReLU function. The structure 
of the decoder module was similar to that of the 
encoder module. However, the difference was 
that the decoder module used upsampling to 
replace the downsampling step in the encoder 
module. The feature information extracted by 
the encoder module was simultaneously 
combined with the feature information extracted 
by the decoder module through skip connections 
as the inputs of the next-level decoder module. 
This method could effectively compensate for 
the loss of feature information caused by 
successive convolutional layers and 
downsampling. 
 
The discriminative network was mainly used to 
distinguish between the generative fake samples 
and real samples. The antagonistic training 
process of the cGAN could prompt the generative 
network to generate fake samples that were 
closer to the real samples. Its network structure 
was shown in Figure 3. The discriminative 
network employed a feed-forward and 
downsampling structure, which consisted of four 
successive convolutional modules and a fully 
connected layer. Each convolutional module 
consisted of successive 3 × 3 convolutional layers 
with strides of 2, a BN operation, and a leaky 
ReLU function. To maintain the training stability 
of the discriminative network, the number of 
output channels in all the convolutional layers 
were set to 128. Finally, the fully connected layer 
was used to distinguish between the generative 
fake samples and the real samples. 
 
Data augmentation of ultrasound images based 
on image-to-image translation 

The data augmentation method applied to 
ultrasound images was more complex than that 
used for ultrasound image segmentation masks. 
Two types of data augmentation methods were 
available for ultrasound images. The first type 
included traditional methods based on several 
affine transformations including flipping, 
rotation, scaling, and translation. The other type 
included black-box methods based on GANs. To 
augment ultrasound image data based on affine 
transformation, fake ultrasound image samples 
were generated by setting fixed parameters, 
which involved only a tiny geometric 
transformation of the ultrasound images, and 
the images could not be transformed based on 
their categories. Therefore, the traditional data 
augmentation methods based on affine 
transformation had relatively narrow application 
fields. Due to the large variations in the lesion 
structures of ultrasound images, a GAN was used 
for augmenting ultrasound images data, which 
might produce inconsistent results. Therefore, 
image-to-image translation was used to 
transform ultrasound image segmentation masks 
into ultrasound images. The image-to-image 
translation process was based on the pix2pix 
model, which used U-Net as the generative 
network and PatchGAN as the discriminative 
network [19]. In the U-Net structure, the feature 
information of the symmetric encoder module 
and decoder module was combined to form the 
inputs of the next decoder module through skip 
connections. These connections could 
compensate for the loss of feature information 
caused by successive convolutional layers and 
downsampling. This method effectively improved 
the translatability of images. In PatchGAN, each 
image was divided into N × N patches. PatchGAN 
then tried to determine whether each patch was 
real or fake. The final classification result was 
determined by averaging the results of all the 
patches. The structure of the proposed data 
augmentation method for ultrasound images 
based on image-to-image translation was shown 
in Figure 4. The developed data augmentation 
method for ultrasound images based on image-
to-image translation employed a type of cGAN. 
During  the  antagonistic  training  process  of  a 
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Figure 4. The architecture of image-to-image translation. 

 
 
cGAN, the generative network constantly 
adjusted its parameters so that the discriminative 
network could not distinguish between the 
generative fake samples and real samples. The 
generative network was then prompted to 
generate fake ultrasound image samples that 
were closer to the real samples. The training 
dataset of this algorithm consisted of pairs of 
image samples, including ultrasound images and 
the corresponding ultrasound image 
segmentation masks. The inputs of image-to-
image translation included random noise z and 
real samples x. The outputs of the generative 
network were denoted as y. The input x was used 
to constrain the mapping between the 
generative fake samples and real samples. The 
mapping between the input and output was 
defined as G: {x, z}→y. To form the objective 
function, the L1 loss function was added to the 
objective function of the cGAN to optimize the 
algorithm. The objective function could be 
expressed as follows: 

 
ℒ𝐿1(𝐺) = 𝐸𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖1]                      (3) 

 
During antagonistic training process of the cGAN, 
generative network G tried to minimize the 
objective function, while discriminative network 
D tried to maximize the objective function. This 
scheme could be expressed by the following 
function: 
 

ℒ𝑐
∗ = 𝑎𝑟𝑔 min

𝐺
max

𝐷
(ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺) )    (4) 

where λ represented the weight value, and the 
value of λ was set to 100. 
 
Lesion classification for ultrasound images 
based on ResNet-50  
ResNet-50 was used for the classification of 
lesions in ultrasound images and the 
segmentation masks of ultrasound images. 
ResNet-50 consisted of five convolutional 
modules, a pooling layer, and a fully connected 
layer. The structure of ResNet-50 was shown in 
Figure 5. The convolutional module was 
composed of successive 7 × 7 convolutional 
layers with strides of 2, BN, a ReLU function, and 
a max-pooling layer. Among the residual 
convolutional modules, different modules 
contained different numbers of residual units. As 
the depth of the network increases, its 
performance may improve. When the depth of 
the network exceeded 20, the performance 
decreased rather than improved, which was 
called gradient vanishing or gradient explosion 
[20]. To mitigate this problem, ResNet-50 used 
different numbers of residual connection units. 
Each residual connection unit was composed of 
three successive 1 × 1, 3 × 3, and 1 × 1 
convolutional layer and each convolutional layer 
was followed by BN and ReLU activation. 
Moreover, each residual connection unit 
adopted skip connections, which could degrade 
the deep network to a shallow network during 
training and optimize the network performance. 
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Figure 5. The architecture of ResNet-50. 

 

 
Datasets selection and model construction 
The datasets used in this study included 
segmentation masks and corresponding 
ultrasound images of lymph nodes and breast 
lesions. The lymph node dataset consisted of 143 
samples acquired from Hua Shan Hospital 
(Shanghai, China) [21]. Among the 143 lymph 
node samples, 99 were benign samples and 44 
were malignant samples. Twenty-four benign 
samples and 24 malignant samples were 
randomly selected to form the test datasets, and 
the remaining samples were used to produce the 
training datasets. The breast lesion ultrasound 
image datasets consisted of 647 samples 
acquired from the Kaggle challenge [22]. Of the 
647 breast lesion ultrasound image samples, 437 
were benign, and 210 were malignant.  One 
hundred benign samples and 100 malignant 
samples were randomly selected to compose the 
test datasets, and the remaining samples were 
used to construct the training datasets. All the 
samples were cropped to 320 × 256. PyTorch 
(version 1.7.0) (https://pytorch.org/) was 
employed as the framework for implementing 
network. The training process was conducted on 

a workstation equipped with an NVIDIA 2080Ti 
graphics card possessing 11 GB of memory. The 
accuracy, precision, recall, and F1-score were 
used as evaluation indices and were defined as 
follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                  (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                         (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                               (7) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
          (8) 

 
where TP, FP, TN, and FN denoted true positives, 
false positives, true negatives, and false 
negatives, respectively. Malignant samples were 
defined as positive, so the recall value was more 
worthy of attention than the accuracy achieved 
in the study. Notably, networks based on deep 
learning that employed the same training 
datasets and seed points yielded different results. 

https://pytorch.org/
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Figure 6. The samples of lymph node segmentation masks.  

 
 
Therefore, the study for classifying benign and 
malignant lesions was repeated three times and 
the average values were calculated according to 
the test results [23]. The data augmentation 
process based on affine transformation included 
primarily horizontal and vertical flipping, 90% to 
110% random scaling, and 0 to 10 degrees of 
random rotation. 
 
Statistical analysis 
SPSS (version 26.0) (IBM, Armonk, NY, USA) was 
employed for statistical analysis of this study to 
verify the superiority of proposed data 
augmentation method. Because the evaluation 
indices did not follow Gaussian distributions, the 
nonparametric Friedman test was used to 
evaluate the performance of proposed 
algorithms. A P value that was less than 0.05 
indicated a significant difference.  

 

Results and discussion 
 

Data augmentation for segmentation masks 
based on the cGAN 
The fake segmentation masks that were 
indistinguishable from real segmentation masks 
was generated. For both the generative network 
and the discriminative network, Adam was 
selected as the optimizer. The initial learning rate 
was set to 0.0001, and the batch size was set to 4 
during training. The studies were conducted on 
the ultrasound image segmentation masks of the 
lymph nodes and breast lesions, during which the 
benign samples and malignant samples were 
iterated 300 times. Finally, 9,600 fake benign and 
malignant segmentation masks of lymph node 
and breast lesion ultrasound images were 
generated. The results showed that data 
augmentation process based on the cGAN could 
generate  fake  lymph  node  segmentation  masks 
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Figure7. Breast lesion segmentation mask samples. 

 
 
(Figure 6) and fake breast lesion segmentation 
masks (Figure 7) according to the given 
categories under imposed the constraints. 
 
Data augmentation for ultrasound images based 
on image-to-image translation 
The fake ultrasound images from the 
corresponding segmentation masks via image-to-
image translation was generated. The Adam 
optimizer was used in both the generative 
network and the discriminative network for 
image-to-image translation purposes. The 
learning rate was set to 0.0002, and the batch 
size was set to 1. The ultrasound image datasets 
consisting of lymph nodes and breast lesions 
were applied for this study, in which the benign 
and malignant samples were iterated 2,000 
times. A total of 9,600 fake benign and malignant 
ultrasound images of lymph nodes and breast 
lesions were generated. The results showed that 

the network continuously refined and filled in the 
texture information of the ultrasound images 
centered on the segmentation masks and 
ultimately generated fake ultrasound images of 
lymph nodes (Figure 8). However, distinguishing 
real ultrasound images of lymph nodes from fake 
ultrasound images of lymph nodes generated by 
image-to-image translation using the subjective 
judgment mechanism of the human eyes was 
impossible. Moreover, the proposed method 
continuously refined and filled in the texture 
information of the ultrasound images centered 
on the segmentation masks and ultimately 
generated fake ultrasound images of breast 
lesions (Figure 9). The results demonstrated that 
it was also impossible to distinguish real breast 
lesion ultrasound images from fake breast lesion 
ultrasound images generated by image-to-image 
translation using the subjective judgment 
mechanism of the human eyes. 
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Figure 8. The samples of generative lymph node ultrasound images. 

 
 

 
 
Figure 9. The samples of generative ultrasound images of breast lesion. 
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Table 1. The lesion classification results of segmentation masks. 
 

Datasets 
Lymph node Breast lesion 

Accuracy Precision Recall F1-score  Accuracy Precision Recall F1-score 

TDA 79.30% 79.90% 75.35% 77.56% 92.00% 97.19% 86.50% 91.53% 
DA_cGAN 95.31% 95.78% 94.79% 95.28% 93.25% 98.06% 88.25% 92.89% 
O_DA_cGAN 96.88% 97.91% 95.83% 96.86% 93.58% 98.10% 89.05% 93.35% 

 
 
Classifying lesions in segmentation masks based 
on ResNet-50 
The classification of benign and malignant lesions 
was conducted using the segmentation mask 
datasets constructed in three ways including 
traditional data augmentation based on affine 
transformation (TDA), data augmentation based 
on a cGAN (DA_cGAN), and adding the original 
segmentation masks to the datasets of DA_cGAN 
(O_DA_cGAN). The results showed that the 
O_DA_cGAN dataset yielded the best lesion 
classification results in terms of four evaluation 
indices (Table 1). Compared with those obtained 
on the TDA lymph node dataset, the four 
evaluation indices of the O_DA_cGAN improved 
by 24.19% on average. Compared with those 
obtained on the TDA breast lesion dataset, the 
four evaluation indices achieved on O_DA_cGAN 
improved by 1.90% on average. With respect to 
the data augmentation method for segmentation 
masks based on affine transformation, the 
classification performance improved little on the 
lymph node dataset, while it greatly improved on 
the breast lesions dataset. Data augmentation 
based on affine transformation yielded 
inconsistent improvement effects on the lesion 
classification results obtained for different types 
of segmentation masks. Therefore, the data 
augmentation approach based on affine 
transformation lacked generalizability. The data 
augmentation method based on a cGAN could 
achieve data augmentation and improve the 
lesion classification performance achieved on 
segmentation masks. 
 
Classifying lesions in ultrasound images based 
on ResNet-50 
The benign and malignant lesion classification 
experiments were conducted on ultrasound 
images of lymph nodes and breast lesions. 

Distinguishing benign lesions from malignant 
lesions was more difficult in ultrasound images 
than in segmentation masks. The ultrasound 
image datasets were constructed in three ways 
including traditional data augmentation based on 
affine transformation (TDA), data augmentation 
based on a cGAN (DA_cGAN), and the addition of 
the original ultrasound images to the dataset 
generated by DA_cGAN (O_DA_cGAN). The 
results showed that, in the lesion classification 
task conducted on the lymph node ultrasound 
images, O_DA_cGAN yielded the best 
classification performance in terms of the four 
evaluation indices. Compared with those of the 
TDA lymph node dataset, the four indices of 
O_DA_cGAN improved by 25.04% on average. 
For the lymph node lesion classification task 
conducted on ultrasound images based on affine 
transformation, little improvement in the 
classification performance was observed, while 
data augmentation based on image-to-image 
translation yielded a great improvement. In the 
lesion classification task conducted on the breast 
ultrasound images, although the O_DA_cGAN 
dataset did not yield optimal results for the four 
evaluation indices, the recall was optimal on this 
dataset. Compared with those of the TDA breast 
lesion dataset, the four evaluation indices of 
O_DA_cGAN improved by 0.65% on average. For 
the lesion classification task involving breast 
ultrasound images, the O_DA_cGAN dataset was 
superior to the TDA and DA_cGAN datasets 
(Table 2). 
 
Comparison of different datasets construction 
The comparison statistical analysis of the lesion 
classification results based on different datasets 
construction methods was shown in Table 3. The 
results demonstrated that the higher the mean 
rank  was,  the  better  the  performance  of   the 
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Table 2. The lesion classification results of ultrasound images. 
 

Datasets 
Lymph Node Breast Lesion 

Accuracy Precision Recall F1-score  Accuracy Precision Recall F1-score 

TDA 76.95% 75.68% 75.31% 75.49% 70.50% 66.72% 82.00% 73.58% 
DA_cGAN 93.75% 93.83% 93.75% 93.79% 70.63% 67.53% 80.25% 73.34% 
O_DA_cGAN 94.79% 93.91% 95.83% 94.86% 70.67% 66.48% 83.67% 74.09% 

 
 
Table 3. The lesion classification results mean rank. 
 

Datasets 
Mean Rank  

P Value            
TDA DA_cGAN O_DA_cGAN 

Lymph Node 1.06 2.08 2.99 3.35E-6 
Breast Lesion 1.38  1.88 2.75 0.021 

 
 
corresponding algorithm. The proposed data 
augmentation method significantly improved the 
resulting lesion classification performance.  
 
 

Conclusion 
 
In this study, we proposed a data augmentation 
method for ultrasound images based on a 
conditional generative adversarial network for 
lesion classification. A cGAN was used to 
generate fake segmentation masks of ultrasound 
images by category. Then, image-to-image 
translation was applied to generate fake 
ultrasound images from the corresponding 
segmentation masks for ultrasound image 
classification. Three types of tests were 
performed including data augmentation 
involving segmentation masks based on a cGAN, 
data augmentation involving ultrasound images 
based on image-to-image translation, and 
benign/malignant classification based on ResNet-
50. Compared with the traditional data 
augmentation method based on affine 
transformation, the proposed method exhibited 
average improvements of 13.05% and 12.85% in 
terms of four evaluation metrics, the precision, 
recall, accuracy, and F1-score, in lymph node and 
breast lesion classification tasks conducted on 
segmentation masks and ultrasound images, 
respectively. The results showed that the data 
augmentation method based on the cGAN 

generated fake segmentation masks according to 
the given categories under the imposed 
constraints. The proposed data augmentation 
method was based on image-to-image 
translation, which changed the traditional data 
augmentation process and improved the 
ultrasound images generated by segmentation 
masks. Moreover, this data augmentation 
method could be applied to other ultrasound 
image analysis tasks. The lesion classification 
study based on ResNet-50 proved that the 
proposed data augmentation was superior to the 
traditional data augmentation methods based on 
affine transformation. The results of this study 
confirmed that combining the fake samples 
generated by a cGAN or image-to-image 
translation with the original samples could yield 
optimal classification performance. The data 
augmentation method based on a cGAN 
exhibited better generalization and classification 
performance on different types of ultrasound 
images or segmentation masks. When 
attempting to achieve improved lesion 
classification performance for benign and 
malignant samples, segmentation masks 
outperformed ultrasound images. 
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