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Many studies project that, due to antibiotic misuse, phage therapy has been considered as one of the most 
promising alternatives for the treatment of human diseases infected by antibiotic-resistant bacteria. The 
identification of phage-host interactions (PHI) helps to explore the mechanisms by which bacteria respond to 
phages and provides new insights into effective therapeutic approaches. Computational models for predicting PHI 
are not only time/cost saving, but also more efficient and economical than traditional wet experiments. In this 
work, we proposed a deep learning based computational model named DWPREPHI to predict PHI through the 
combining DNA and protein sequence information. More specially, DWPREPHI first extracted information about 
the node properties of the interaction network by a natural language processing algorithm that initialized the 
node representations of the phage and the target bacterial host. The graph embedding algorithm, Deepwalk, was 
then used to extract link behavior information from the PHI network, and finally a deep neural network was 
applied to accurately detect interactions between phages and their bacterial hosts. On the drug-resistant bacteria 
dataset ESKAPE, DWPREPHI achieved a prediction accuracy of 92.25% and an AUC value of 0.9674 under the 5-
fold cross-validation method, which was significantly better than other methods. In addition, three case studies 
were conducted for E. coli, Pseudomonas aeruginosa, and Salmonella enterica to further demonstrate the utility 
of the proposed model. Among the top 10 phages associated with these hosts, 7, 8, and 8 have been reported. 
These excellent experimental results suggested that the DWPREPHI model could provide reasonable candidates 
for sensitive bacteria for biological experiments in phage therapy.  
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Introduction 
 
Available research suggests that bacterial 
infections may be involved in the growth and 
development of a variety of diseases, including 
cholera [1], inflammatory bowel disease [2], 
colon cancer [3], tetanus [4], and different types 
of cancers [5-7]. Researchers discovered 

antibiotics in 1928 and have since used them 
extensively in clinical practice to treat serious 
bacterial diseases [8], saving countless lives. 
Unfortunately, due to the overuse of antibiotics, 
bacteria have developed resistance mechanisms 
[9]. In 2019, centers for disease control and 
Prevention reported that approximately 2.8 
million cases of antibiotic-resistant infections 
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occur each year in the United States [10], 
resulting in more than 35,000 deaths; Similarly, in 
Europe, 33,000 people die each year from 
antibiotic-resistant infections [11]. Thus, there is 
an urgent need to develop new antibiotics or 
alternative therapies to avoid further 
deterioration of antibiotic-resistant infections. 
However, many pharmaceutical companies do 
not continue to develop new antibiotics due to 
high production costs, expected benefits and 
long development times [12]. Therefore, 
researchers are looking for alternative therapies 
to reduce antibiotic-resistant infections and to 
treat bacterial diseases. The ability of phages not 
only to destroy specific bacterial hosts but also to 
replicate exponentially has made phage therapy 
one of the most promising therapies for the 
treatment of bacterial diseases and antibiotic-
resistant infections [13]. Predicting phage-host 
interactions (PHI) can help to understand 
whether phages can be used to treat bacterial 
diseases [14]. However, experimental validation 
methods for PHI require considerable time, 
human and financial resources. Thus, researchers 
have sought to develop computationally based 
methods for PHI to predict and screen target 
phages for the treatment of bacterial diseases to 
reduce the time and money costs required. 
 
Studies have shown that proteins play a 
fundamental role in the biology of phages and 
hosts; thus, researchers have proposed methods 
to predict PHI based on protein sequences. For 
example, Leite et al. [15, 16] used primary 
structure sequences of phage and host proteins 
and classical machine learning classifiers, 
including RF, SVM, LR, k-nearest neighbor KNN, 
and multi-layer perceptron (MLP), to predict PHI. 
Zhu et al. [17] proposed a novel deep learning-
based model named PHIHNE that predicts the 
phage-host interactions through heterogeneous 
network embedding methods. Zhou et al. [18] 
developed PHISDetector, which is used to predict 
phage–host interaction signals through machine 
learning based model. Galiez et al. [19] presented 
WIsH model, which performed a suited 
probabilistic approach to calculate the k-mer 
frequencies for host prediction. Although the 

existing methods have achieved good results in 
PHI prediction, there are still some limitations. 
First, there are thousands of experimentally 
validated PHI pairs in the database, but only a few 
hundred non-redundant PHI pairs are available 
for building prediction models [20]. This 
limitation hinders the development of high-
performance predictive models. Second, most of 
the existing methods use phage and host DNA 
sequences or protein sequences to construct 
predictive models, but few of them are able to 
combine both types of sequence information 
[21]. Third, although prediction models have 
been built using various feature and machine 
learning techniques, these models often lack 
sufficient interpretability, hindering the 
elaboration of PHI prediction mechanisms [22]. In 
recent years, graph embedding algorithms have 
received much attention in the fields of cell 
biology and bioinformatics. Researchers have 
gradually started to experiment with applying 
such techniques to tackle different prediction 
tasks. As a typical model of graph neural 
networks, the Deepwalk algorithm uses a 
random walk-based approach to learn the 
topological features of the network and has 
recently been widely applied in the field of 
bioinformatics [23-25]. For example, Li et al. [26] 
proposed a method based on Deepwalk and 
network consistency projection for predicting 
circRNA-disease associations. Deepwalk was 
used in this work to learn features of the circRNA-
disease association network and combine it with 
circRNA-circRNA, disease-disease similarity for 
predicting circRNA-disease potential 
correlations. In addition, some researchers have 
developed deep neural networks (DNNs) to 
improve the interpretability of predictive models 
[27]. Further developments in these techniques 
provide new perspectives on prediction accuracy 
[28]. 
 
In this paper, we proposed a novel PHI prediction 
model named DWPREPHI. The approach was 
based on the powerful graph embedding 
algorithm Deep Wander and the natural 
language processing algorithm Word2vec to 
solve    various    problems    of    PHI    prediction. 
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Figure 1. Workflow diagram of the DWPREPH prediction model proposed in this paper. 

 
 
Specifically, we first constructed a phage-host 
interaction network to generalize the connection 
between phages and bacteria. The nodes in the 
network graph represented the phage and the 
target host, and the links between the nodes 
represented their interactions. Behavioral 
features were then captured from their 
interaction links using Deepwalk. A natural 
language processing algorithm, word2vec, was 
also used to encode the tail protein and DNA 
sequences of the phage and the receptor-binding 
protein (RBP) on the surface of the host to extract 
the attribute information. Finally, DWPREPHI 
integrated the behavioral and attribute 
information into a fusion matrix and then used a 
deep neural network (DNN) to achieve predictive 
classification. Comparison results with state-of-
the-art machine learning classifiers as well as 
graph embedding methods demonstrated the 
feasibility and efficiency of the proposed model. 
A case study of three highly pathogenic bacteria 
further demonstrated the usefulness of the 
proposed model. The combined experimental 
results showed that the DWPREPHI model was 
well suited for predicting phage-host 
interactions. In future work, we hope that it will 

become a useful complementary tool for biology. 
The workflow diagram of the DWPREPH 
prediction model was shown in Figure 1. 
 
 

Materials and Methods 
 
Dataset description 
The tail protein of the phage and the receptor 
binding protein on the surface of the host 
determines whether the phage can attach to the 
host. Also, a fundamental function of phage DNA 
is to direct the synthesis of its endogenous 
counterpart (tail protein). Therefore, we took 
these three key factors into account when 
constructing our predictive DWPREPHI model. In 
our experiments, we collected 1,170 DNA and 
protein information related to the tail structure 
of the target phage from three different public 
databases, including UniprotKB [29], UniRef [30], 
and Millard Lab (http://millardlab.org), together 
with information on the RBP sequences of their 
corresponding hosts. The dataset was dominated 
by ESKAPE (Enterococcus faecalis, Acinetobacter 
baumannii, Pseudomonas aeruginosa, 
Staphylococcus aureus, Klebsiella pneumoniae, 
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and Enterobacter spp.) pathogens [31], 
supplemented by Escherichia coli, Salmonella 
enterica, and Clostridium difficile. To reduce the 
computational load, identical sequences were 
removed [32]. We ended up with a collection of 
1,232 phage-host pairs consisting of nine 
bacterial species. 
 
Constructing the behavior features of PBI 
networks  
Deepwalk, a widely used graph embedding 
method, was applied in this paper to extract 
behavior information from the links in the PBI 
networks [33]. The Deepwalk algorithm consists 
of two main kinds, the random walk algorithm 
and the Skip-gram algorithm. Specially, it applied 

the random walk of t  length in each node iv , 

and then utilized Skip-gram model to learn the 
embedding vectors from these nodes. The Skip-
gram model could calculate the like hood of the 
length in window w  and its object function was 
as follows: 
 

  ( )( )min log Pr ,..., \i w i w i iv v v v− +

−            (1) 

 

where   was a ( )m n d   low-dimensional 

spaces matrix and denoted the representation of 

iv . d  represented the embedding dimension. 

The Skip-Gram framework further approximated 
the above conditional probabilities using the 
following assumptions: 
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To reduce the computing time of ( )( )j iPr v v

, the softmax function of the hierarchy was used 
to decompose conditional probabilities by 
assigning the vertices of a walking sequence to 
the leaves of a binary tree, which was shown in 
equation (3). 
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v
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sequence from start node to finish node 
jv  .

( )lb  was the corresponding embedding 

vectors about lb .  

 
After performing the Deepwalk algorithm in PHI 
network, we obtained the embedding matrix  . 
Each row of   represented to a d-dimensional 
embedding vector of potential topological 
representations of each node. Thus, the cosine 
similarity between the two embedding vectors 
could be calculated as the similarity between 
these nodes. The similarity formula of phages 
and host nodes was shown as follows: 
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where ( ),iv k  and ( ),jv k  represented the 

k-th component of the embedding vector ( )iv  

and ( )jv . According to formula (4), we ccould 

construct the phage topological similarity matrix 

pSim  and host topological similarity matrix 

hSim . 

 
Constructing the attribute features of PHI 
network 
In the DWPREPHI model, a Word2vec algorithm 
[34] based on natural language processing 
techniques was used to encode the DNA and tail 
proteins of the phage and the receptor binding 
proteins of the host, thereby capturing 
information about the node properties of the 
phage-host interaction network. The difference 
between CBOW and Skip-gram models [35] is 
that CBOW uses the context to predict the 
current word, while Skip-gram uses the current 
word to predict the context. Skip-gram is more 
efficient if the training data is not very large. In 
our experiments, given the size of the PHI dataset, 
we chose the CBOW model to learn more words, 
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Figure 2. Flowchart of the word2vec algorithm based on the CBOW framework. 

 
 
thus speeding up the training time. The 
Word2vec algorithm was used to encode a matrix 
of DNA and protein sequences to extract 
information about the node properties of the 
topological network. The method involved 
representing the sequences as multiple K-mers 
words [36]. Assuming a receptor protein 
sequence MSTITQF is given a 4-mer length, it can 
be divided into several words such as MSTI, STIT, 
TITQ, and ITQF. To speed up the training, we 
chose the Word2vec algorithm based on the 
continuous bag-of-words model to extract the 
word vectors. Here, DNA sequences, protein 
sequences, and k-mers corresponded to 
sentences and words in natural language, 
respectively. In this work, the trained Word2vec 
model would generate a 64-dimensional 
embedded word vector as a means to extract the 
attribute features of the network nodes. In 
previous studies, 4-mer had been shown to be 
the length at which optimal prediction accuracy 
was obtained in a five-fold cross-validation 
framework. The flowchart of the Word2vec 
algorithm employed in this paper was shown in 
Figure 2. 
 
Deep neural network 
Artificial neural networks are originally inspired 
by neural networks in the brain and consist of 
multiple layers of interconnected computational 
units (neurons). The depth of a neural network 
corresponds to the number of hidden layers, 

while the width corresponds to the maximum 
number of neurons in it. Artificial neural 
networks with a multilayer structure (two or 
more hidden layers) are called deep neural 
networks [37]. In terms of its structure, a DNN is 
a multi-layer stack of common modules. Features 
are first received at the input layer and then 
transformed non-linearly between multiple 
hidden layers. The average gradient is calculated 
to adjust the design weights accordingly before 
producing the final output. In addition, all 
neurons of the first hidden layer are connected 
to all neurons forming the input layer, while all 
neurons of the last hidden layer are connected to 
the output layer. The weighted sum of its inputs 
will then be calculated by the neurons and its 
output evaluated using a non-linear activation 
function. In this work, rectified linear units (ReLU) 
[38], tanh and softmax [39] were used as 
activation functions. More specifically, the tanh 
function was used in the input layer, while the 
activation functions in the hidden and output 
layers were the ReLU and softmax functions, 
respectively. A binary cross-entropy function [40] 
was used as the loss function. The Dropout 
learning algorithm [41] and the Adam optimiser 
[42] were also used to avoid overfitting and to 
speed up training. The entire network was 
defined as follows. 
 

( )1 1 1 1 1 ,  1,...,m

i i i iH W X b i n= + =                   (5) 
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( )1 ( 1) 1,   1, , ;  2, , ;  1,2m

ij ij i j ijH W H b j n j h m −= + = = =L L  (6) 

 

( )( )
1 1

3 1 2

1 1,  1, , ;  1ik ik ih ih ikH W H H b i n k h=  + = = +L       (7) 

 

(8) 
 
where m denoted the individual networks and n 
denoted the batch size of the PHI pairs used for 
network training. The depths of the fusion 
network and the two individual networks were 
denoted by h2 and h1 and represented the 
activation functions ReLU and softmax for the 
hidden and output layers, respectively. x and H 
corresponded to the batch training inputs and 
outputs of the layers. The variable W represented 
the weight matrix between the input, hidden, 
and output layers, and b was the bias term. In 

addition,   was the concatenation operator and 
y represented the corresponding desired output. 
 
Performance evaluation indicators 
In this study, the 5-fold cross-validation 
framework (5-fold CV) was used to compute a 
measure of the predictive performance of the 
DWPREPHI model [43]. We first divided the 
ESKAPE dataset into five random subsets of equal 
sample size, and then used four of these subsets 
as the training set and the remaining one as the 
test set. This process was repeated five times 
until each subset was used as the test set once 
and only once. Finally, the mean and standard 
deviation of these results were used as the 
predicted output of the model. In the 
experiments, Accuracy (ACC), Sensitivity (Sen), 
Specificity (Spec), Precision (Prec), and F1-score 
(F1) were used as the criteria for assessing the 
predictive ability of the DWPREPHI model. The 
corresponding formulae are shown below. 
 

.
TP TN

ACC
FP TP FN TN

+
=

+ + +
                              (9) 

 

.
TP

Sen
FN TP

=
+

                                                         (10) 

.
TN

Spec
TN FP

=
+

                                                       (11) 

 

.
TP

Prec
TP FP

=
+

                                                       (12) 

 

2 . .
1

. .

Prec Sen
F

Prec Sen

 
=

+
                                                   (13) 

 
where TP, FP, TN, and FN represented true 
positive, false positive, true negative, and false 
negative, respectively. ROC curves and PR 
(precision-recall) curves were also plotted and 
the area under the ROC curve (AUC value) was 
calculated to numerically demonstrate the 
predictive performance of the proposed model. 
 
 

Results and discussion 
 
Evaluation of prediction performance 
In our experiments, we used a 5-fold cross-
validation method (5-fold CV) to evaluate the 
model capability. Table 1 summarized the results 
obtained by the DWPREPHI model on the ESKAPE 
dataset. The proposed model achieved 92.25% 
accuracy, 98.70% sensitivity, 85.80% specificity, 
87.45% precision, and 92.73% F1 value. Figure 3 
plotted the ROC curves and PR curves generated 
by the proposed model on the ESKAPE dataset. 
The DWPREPHI model generated AUC and PR 
values of 0.9674 and 0.9496. These experimental 
results indicated that the proposed model had 
good predictive performance and was effective in 
predicting the potential PHI pairs. 

 
Comparison of the performance of different 
classifier models 
To further validate the better performance of 
deep neural network-based classifiers for phage-
host prediction, we compared the deep neural 
network module with a number of powerful 
machine learning classifiers. Specifically, the 
behavioral and attribute information extracted 
from the phage-host interaction network was 
kept unchanged and the DNN module was 
replaced   with   four   popular   classifier   models, 
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Table 1. Predictive performance of the DWPREPHI model on the ESKAPE model. 
 

5-fold ACC. (%) Sen. (%) Spec. (%) Prec. (%) F1 AUC 

Fold-1 93.00 98.78 87.22 88.55 93.38 0.9751 
Fold-2 93.31 99.19 87.42 88.75 93.68 0.9791 
Fold-3 90.37 97.77 82.96 85.16 91.03 0.9459 
Fold-4 90.87 98.17 83.57 85.66 91.49 0.9599 
Fold-5 93.71 99.59 87.83 89.11 94.06 0.9767 

Average 92.25±1.52 98.70±0.74 85.80±2.33 87.45±1.88 92.73±1.37 0.9672±0.0142 

 
 
A.       B. 

  
 
Figure 3. ROC curves (A) and PR curves (B) generated by the DWPREPHI model on the ESKAPE dataset based on 5-fold cross-validation. 

 
 
Table 2. Predictive performance of the DWPREPHI model on the ESKAPE model. 
 

Classifiers ACC. (%) Sen. (%) Spec. (%) Prec. (%) F1 AUC 

RF 84.07±1.54 83.22±2.37 84.92±0.97 84.65±1.10 83.92±1.67 0.9153±0.0133 
SVM 83.46±0.88 78.84±2.29 88.08±0.80 86.88±0.56 82.64±1.16 0.9085±0.0096 
KNN 72.66±0.49 82.76±2.04 62.57±2.31 68.87±0.85 75.16±0.57 0.8333±0.0067 
GBDT 85.03±4.33 97.38±1.15 72.68±8.08 78.34±5.24 86.76±3.43 0.9109±0.0478 
DNN 92.25±1.52 98.70±0.74 85.80±2.33 87.45±1.88 92.73±1.37 0.9672±0.0142 

 
 
including random forest (RF) [44], support vector 
machine (SVM) [45], K Nearest Neighbors (KNN) 
[46], and Gradient Boosting Decision Tree (GBDT) 
[47]. As with the models presented in the paper, 
we also used a 5-fold cross-validation approach, 
and the specific prediction results for these four 
methods were presented in Table 2. The results 
showed that the GBDT-based method achieved 
the best results among the four models with an 
accuracy and AUC of 85.03% and 0.9109, 
respectively, but is still 7.22% and 0.0536 lower 

than our model in terms of accuracy and AUC. To 
provide a more intuitive comparison, we 
presented all the comparison results in the form 
of bar charts in Figure 4. The combined 
comparison results proved that the traditional 
machine learning based classifier predicted 
somewhat lower results than the deep learning-
based classifier. This could be attributed to the 
fact that deep neural networks could capture the 
complex non-linear relationships between input 
and output data. 
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Figure 5. Comparison of the performance of different classifiers. 

 
 
Table 3. Comparison of prediction performance with different network embedding algorithms. 
 

classifiers ACC. (%) Sen. (%) Spec. (%) Prec. (%) F1 AUC 

SDNE 81.79±1.26 87.47±1.12 76.1±1.72 78.56±1.36 82.77±1.14 0.8814±0.0142 
Lap 72.33±8.40 77.97±7.84 66.69±9.59 70.19±7.89 73.85±7.78 0.8071±0.0762 

Hope 74.46±7.84 78.38±9.38 70.55±7.13 72.61±6.71 75.34±7.8 0.8339±0.0678 
This study 92.25±1.52 98.70±0.74 85.80±2.33 87.45±1.88 92.73±1.37 0.9672±0.0142 

 
 
Comparison between different network 
embedding algorithms 
To evaluate the effectiveness of the deep 
wandering algorithm, we compared it with a 
number of popular network embedding 
algorithms including SDNE (Structural Deep 
Network Embedding) [48], Lap (Laplacian 
Eigenmaps) [49], and Hope. For a fair comparison, 
all methods were trained to predict with the 
same data dimension and DNN structure. Table 3 
presents the prediction results of these three 
powerful graph embedding algorithms. The 
results showed that all methods perform lower 
than the depth wandering based methods. The 
prediction performance of the two factorization-
based methods (Lap and Hope) was generally 5-
9% higher than that of the deep learning-based 
algorithm (SDNE). However, despite the good 
prediction results of SDNE, it was still 10.46% 
lower than our method in terms of ACC values, 
which suggested that our Deepwalk algorithm 

based on the random walk principle could 
improve the prediction performance of the 
model in this experiment. 
 
Case study 
To further assess the realistic performance of the 
proposed model for predicting phage-host 
interactions, we did case studies for three 
pathogenic strains of E. coli, Pseudomonas 
aeruginosa, and S. enterica. We used the known 
ESKAPE dataset as a training set to make 
predictions for all three possible phage-host 
relationships. The top 10 pairs with the highest 
prediction scores were then selected for query 
validation in the EMBL-EBL database. The results 
were shown in Tables 4-6, where 7, 8, and 8 of 
the top 10 predicted phage-host interactions 
were experimentally validated in the 
experimental data provided by the EMBL-EBL 
database, respectively. 
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Table 4. The top 10 phages predicted by the proposed model to be associated with E. coli. 
 

Rank EMBL-EBL ID Evidence Rank EMBL-EBL ID Evidence 

1 AJ505988 Confirmed 6 AP009390 N.A. 
2 Z36986 Confirmed 7 EU330206 Confirmed 
3 X06792 Confirmed 8 FJ839693 Confirmed 
4 X04442 Confirmed 9 GU323318 N.A. 
5 X01753 Confirmed 10 KM501444 N.A. 

 
 
Table 5. The top 10 phages predicted by the proposed model to be associated with P. aeruginosa. 
 

Rank EMBL-EBL ID Evidence Rank EMBL-EBL ID Evidence 

1 AM265638 Confirmed 6 LN610573 Confirmed 
2 HG518155 Confirmed 7 KC862296 Confirmed 
3 FN263372 Confirmed 8 KF147891 Confirmed 
4 KX587949 N.A. 9 KU948710 Confirmed 
5 GU988610 Confirmed 10 KT001918 N.A. 

 

 
Table 6. The top 10 phages predicted by the proposed model to be associated with S. enterica. 
 

Rank EMBL-EBL ID Evidence Rank EMBL-EBL ID Evidence 

1 MF001354 Confirmed 6 EF151188 Confirmed 
2 EF212166 Confirmed 7 GU573886 Confirmed 
3 MH709120 Confirmed 8 MF188997 Confirmed 
4 MF415410 N.A. 9 CP018657 Confirmed 
5 KY652726 N.A. 10 CP000026 Confirmed 

 
 

Conclusion 

 
In this study, we proposed a model for predicting 
potential phage-host interactions based on a 
graph embedding algorithm. To uncover the 
hidden relationships between phages and hosts, 
the model fully combined information on link 
behavior and node attributes of phage-host 
interactions graphs and effectively predicted the 
relationships between phages and hosts using 
deep neural networks as classifiers. Results of 
cross-validation on the ESKAPE dataset showed 
that the model had excellent overall predictive 
performance. The model also achieved optimal 
results in comparison with different machine 
learning-based classifiers and graph embedding 
algorithms. In addition, to further demonstrate 
the practical value of the model, a case study of 
three pathogenic bacteria (E. coli, Pseudomonas 
aeruginosa, and S. enterica) was conducted, and 

the prediction results were supported by 
relevant experiments and databases. Taken 
together, these experimental results showed 
that our proposed DWPREPHI model was reliable 
in predicting phage-host interactions and could 
provide potential phages for biological 
experiments, offering a new option for phage 
therapy. In future studies, we will try to 
incorporate phage-host similarity information 
and semantic information and optimize the 
prediction framework in anticipation of achieving 
better prediction results. 
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