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This study focuses on the leaf roasting process in the field of tobacco processing. Leaf roasting is an important 
part of the process to adjust the moisture content of tobacco to the appropriate level, which has a significant 
impact on the homogenization and processing quality of tobacco. The study focused on the control of key 
parameters such as temperature, humidity and time in the leaf roasting process and their effects on tobacco 
quality. The study aimed to provide an in-depth assessment of the impact of the leaf roasting process on the 
homogenization and processing quality of tobacco. This study provides a scientific basis for optimizing the process 
parameters and control methods so as to enhance the processing quality of tobacco and the sustainable 
development of the tobacco industry. In this paper, an evaluation model was constructed to study the effect of 
leaf beating and re-firing process on tobacco quality by using a combination of BP neural network and genetic 
algorithm. Tobacco leaf homogenization processing quality indicators, such as moisture, temperature, and 
chemical composition, were analyzed, and how these factors play a role in the leaf beating and re-roasting 
process. Meanwhile, principal component analysis and typical correlation analysis were used to identify the main 
influencing factors, and a comprehensive evaluation model was constructed. The results of the study showed that 
the key parameters in the leaf beating and roasting process have a significant impact on the quality of tobacco 
processing. The combined model optimized by BP neural network and genetic algorithm can effectively predict 
and evaluate the effects of these process parameters on tobacco quality. The evaluation model developed in this 
study, which is used to analyze and improve the leaf roasting process, helps to improve the processing quality of 
tobacco leaves and the overall quality of tobacco products. In addition, this study provides a new analytical 
method and theoretical support for the field of tobacco processing. 
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Introduction 
 
In today's tobacco processing field, the 
application of leaf roasting process is getting 
more and more attention. Leaf roasting is an 
important part of tobacco processing, and its 
main purpose is to restore the moisture content 
of tobacco from its natural state to a suitable 
level for subsequent processing and use [1]. This 
process has an important impact on the quality 
of homogenized tobacco processing and plays a 
key role in improving the quality and consistency 

of tobacco products [2]. The development of the 
leaf roasting process has gone through several 
stages. The early leaf roasting process was mainly 
focused on improving the drying efficiency of 
tobacco to reduce the impact on the quality of 
tobacco during the drying process. With the 
progress of technology and the development of 
the tobacco industry, the leaf roasting process 
gradually developed in the direction of 
refinement and homogenization. At present, 
researchers at home and abroad have made 
important progress in the control of key 
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parameters such as temperature, humidity and 
time in the leaf beating and roasting process [3-
5]. At the same time, new processing equipment 
and technologies have also emerged, providing 
more possibilities for improving the quality of 
tobacco homogenization and processing. In the 
existing research, the influence of the main 
process of leaf roasting on the quality of tobacco 
homogenization mainly involves the following 
aspects: (1) temperature: temperature is one of 
the most critical parameters in the leaf roasting 
process. Appropriate control of temperature can 
ensure that no caramelization reaction occurs 
during the drying process and maintain the color 
and aroma of the tobacco. Research shows that 
the appropriate temperature range is usually 
between 100-130℃, in which the inner quality of 
the tobacco can be retained to the maximum 
extent. (2) Humidity: Humidity is an important 
factor affecting the drying effect of tobacco. In 
the process of leaf roasting, the control of 
humidity is essential to maintain the integrity and 
intrinsic quality of the tobacco. Research shows 
that the appropriate humidity range is usually 
between 8% and 12%, within this humidity range 
can effectively reduce the loss of tobacco in the 
drying process and quality changes. (3) Time: 
Time is another key parameter in the leaf 
roasting process. Studies have shown that the 
appropriate drying time can ensure that the 
tobacco is fully dried, while avoiding the impact 
of over-drying on the quality of tobacco. In 
general, the drying time can be adjusted between 
10-30 minutes depending on the variety and 
thickness of the tobacco. However, existing 
studies have mainly focused on the effects of 
individual process parameters on the quality of 
tobacco processing, and there is a lack of 
evaluation and study of the overall process. In 
view of this, this study aims to assess the effects 
of the main processes of leaf beating and reoiling 
on the quality of tobacco homogenization 
processing, provide scientific basis for optimizing 
process parameters and control methods, further 
improve the quality of tobacco homogenization 
processing, and realize the sustainable 
development of the tobacco industry. 
 

Materials and methods 
 
Backpropagation (BP) neural network 
Backpropagation (BP) Neural Network is a 
multilayer feedforward network trained by 
backpropagation algorithm with good self-
learning, self-organization and adaptability. Its 
core idea is to make the network able to 
automatically model the relationship between 
inputs and outputs by learning sample data, so as 
to make predictions on unknown data [6-8]. The 
topology of BP neural network includes an input 
layer, a hidden layer, and an output layer, which 
can be seen in Figure 1. Among them, the input 
layer is responsible for receiving data from 
external inputs, the hidden layer transforms the 
inputs into meaningful features through 
nonlinear transformation, and the output layer 
transforms the result of the hidden layer into the 
actual output. During the training process, the 
network will backpropagate according to the 
error between the actual output and the desired 
output, so as to adjust the weights and biases of 
each layer and make the prediction results of the 
network gradually close to the actual results [9]. 
 
The learning algorithm for BP neural networks 
consists of the following steps: 
(1) Randomly initialize the weights and biases of 

the network, usually choosing smaller values 
to avoid the problem of vanishing or exploding 
gradients, given the range of connection 
weights (-1, 1), and set up the error function 

e, the computational precision   , and the 
maximum number of learning times M 
according to the requirements. 

 
(2) The kth input sample is randomly selected and 

computed to obtain its desired output: 
 

( ) ( ) ( ) ( )( )1 2 n, , ,x k x k x k x k= K            (1) 

 
(3) Calculate the input and output of each neuron 

in the hidden layer: 
 

( ) ( )
1

n

h ih i h

i

hi k w x k b
=

= − K　　　h=1, 2, , p      (2) 
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Figure 1. BP neural network topology. 
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( ) ( )( ) o qo oyo k f yi k= K　　 =1, 2, ,     (5) 

 
(4) Calculate the partial derivatives of the error 

function with respect to each neuron in the 
output layer according to the obtained 
desired and actual outputs of the network 

( )o k  
 

 

( ) ( ) ( )( ) ( ) ( )( )o d 1 o qo o o ok k yo k yo k yo k = − − K　　 =1, 2, , (6) 

 
(5) The partial derivatives of the error function 

with respect to each neuron in the hidden 
layer are obtained using the connection 
weights from the hidden layer to the output 

layer, the ( )o k  of the output layer and the 

output of the hidden layer ( )h k : 

( ) ( ) ( )( )'

h

o 1

q

o ho hk k w f hi k 
=

 
= − 

 
            (7) 

(6) Use ( )o k  for each neuron in the output 

layer and ( )khow  for the output-corrected 

connection weights of each neuron in the 
hidden layer: 

 

( ) ( ) ( )
e

kho o h

ho

w k ho k
w

 


= − =


△    (8) 

 

( )1

o ( )N N

ho ho hw w k ho k+ = +            (9) 

 
where  is the learning rate. 

 

(7) Use ( )h k  for each neuron in the hidden 

layer and ( )khow  for the output-corrected 

connection weights for each neuron in the 
input layer: 

 

( ) ( ) ( )i

e
kh h i
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= − =
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(8) Calculate the global error for all samples in the 
training set: 

 

( ) ( )( )
2

1 1

1

2

qm

o o

k o

E d k y k
m = =

= −          (12) 

 
(9) Judge whether the error has reached the 

preset requirements. If the error has reached 
the set accuracy or the number of learning 
times has reached the set value, the learning 
is terminated. If the above conditions are not 
met, a new learning sample and the 
corresponding desired output are selected 
and return to step (3) to continue the learning 
[7]. 

 
The learning algorithm of BP neural network has 
the following advantages: (1) it is suitable for 
multidimensional and complex nonlinear 
problems; (2) it can automatically extract the 
relationship between inputs and outputs without 
human intervention; (3) it can be autonomously 
learned and organized; (4) it has good 
generalization ability and robustness. However, 
BP neural networks also have some drawbacks: 
(1) it is easy to fall into local minima and cannot 
guarantee to find the global optimal solution; (2) 
the learning speed is slow and requires a large 
amount of sample data for training; (3) improper 
selection of parameters can easily lead to 
overfitting or underfitting problems; (4) for large-
scale neural networks, the computational 
complexity is high and requires efficient 
optimization algorithms for acceleration. To 
solve these problems, researchers have 
proposed many improvement methods, such as 
momentum term, regularization term, stochastic 
gradient descent and so on. These methods 
improve the training efficiency and 
generalization ability of the network by 
introducing additional optimization terms or 
changing the optimization strategy. In addition, 
with the continuous development of deep 
learning technology, new neural network 
structures, such as convolutional neural 
networks and recurrent neural networks, have 
been widely used, and have shown higher 

performance and robustness in processing 
complex tasks such as image, speech, and natural 
language. 
 
Genetic algorithms 
Genetic algorithm is an optimization algorithm 
based on the principles of biological evolution for 
solving search and optimization problems. It 
searches for the optimal solution of a problem by 
modeling the genetic mechanisms involved in 
biological evolution, such as gene mutation, 
crossover, and selection. Genetic algorithms are 
universal and can be applied to a variety of 
different problems such as function optimization, 
machine learning, image processing and 
production scheduling. Genetic algorithms 
mainly consist of three basic operations: 
selection, crossover, and mutation [10, 11]. The 
selection operation is to evaluate the current 
population according to the fitness function and 
select the individual with higher fitness for the 
next generation population. Crossover operation 
is to exchange the genes of two individuals to 
produce a new individual. Mutation operation, 
on the other hand, randomly changes a part of 
the genes of an individual to increase the 
diversity of the population. 
 
The optimization process of genetic algorithms 
can be viewed as a continuous iterative process, 
where each step evaluates the current 
population according to the fitness function and 
selects individuals with higher fitness into the 
next generation of the population [12, 13]. This 
process gradually eliminates the individuals with 
lower fitness and eventually converges to the 
optimal solution. The process of genetic 
algorithm is as follows (Figure 2): 
(1) Initialization: randomly generate an initial 
population with a population size of N. 
 
(2) Adaptation assessment: each individual's 
adaptation is assessed according to a fitness 
function. 
 
(3) Selection operation: the current population is 
selected according to the fitness function, and 
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individuals with higher fitness have a higher 
probability of being selected [10]. 
 
(4) Crossover operation: two individuals are 
randomly selected for crossover to generate a 
new individual. 
 
(5) Mutagenic manipulation: a number of 
individuals are randomly selected for mutation to 
change some of their genes. 
 
(6) Update the population: add the newly 
generated individuals to the population, keeping 
the population size N. 
 
(7) Termination conditions: judge whether the 
algorithm converges according to certain 
termination conditions. If the maximum number 
of iterations has been reached or the adaptability 
of the population has reached the preset 
threshold, the algorithm ends; otherwise, return 
to the second step. 
 

 
 
Figure 2. Flowchart of genetic algorithm. 

Genetic algorithm optimization of BP neural 
networks 
Genetic algorithm is an optimization algorithm 
based on the principle of biological evolution, 
which can automatically find the optimal solution 
and is suitable for solving complex nonlinear 
problems. BP neural network is a kind of 
multilayer feed-forward neural network, which is 
trained by back propagation algorithm, and it has 
strong self-learning and self-adaptive ability. 
Combining genetic algorithm and BP neural 
network can play their respective advantages and 
improve the optimization efficiency and 
accuracy. First, the process of genetic algorithm 
optimization of BP neural network is as follows: 
(1) Initialization: a set of individuals are randomly 
generated as the initial population, and each 
individual represents a combination of 
parameters of a BP neural network. 
 
(2) Adaptation assessment: for each individual, 
simulation is performed using a BP neural 
network to calculate its output value on the 
objective function, and its adaptation is assessed 
based on the objective function. 
(3) Selection operation: based on the results of 
the fitness assessment, the individual with higher 
fitness is selected as the parent. 
 
(4) Crossover operation: two parents are 
randomly selected for genetic recombination to 
generate new offspring. 
 
(5) Mutation operation: for newly generated 
offspring, a portion of the genes is randomly 
altered to increase the diversity of the 
population. 
 
(6) Update the population: add the newly 
generated offspring to the population and 
update the population size. 
 
(7) Termination condition: according to the 
preset number of iterations or the objective 
function satisfies the condition, stop iteration 
and output the optimal solution. 
 



Journal of Biotech Research [ISSN: 1944-3285] 2024; S1:46-59 

 

51 

 

The following points need to be taken into 
account in the realization process: 
(1) Encoding method: the parameter 
combinations of BP neural networks are 
converted into binary codes to represent 
individuals. 
 
(2) Fitness function: design a fitness function 
based on the objective function to assess the 
strengths and weaknesses of each individual. 
 
(3) Selection operation: a roulette selection 
method or other selection strategy is used to 
ensure that individuals with a higher degree of 
adaptation have a higher probability of being 
selected. 
 
(4) Crossover and mutation operations: random 
genetic recombination and mutation operations 
to increase population diversity based on 
crossover and mutation probabilities. 
 
(5) Early stopping strategy: after reaching a 
preset number of iterations, iterations can be 
terminated early to prevent overtraining and 
overfitting. 
Through experimental comparisons, it is found 
that using genetic algorithm to optimize BP 
neural network can significantly improve the 
performance and generalization ability of the 
network. When dealing with complex nonlinear 
problems, the genetic algorithm can 
automatically find the optimal combination of 
parameters and avoid the trouble of manually 
adjusting the parameters [14-17]. At the same 
time, the BP neural network has a strong 
adaptive ability, can automatically learn and 
adjust the parameters to improve the prediction 
accuracy. 
 
Quality indicators of tobacco leaf 
homogenization processing 
The quality of the leafing and roasting tobacco is 
influenced by physical, chemical, and structural 
factors. During leaf roasting, each piece of 
processed tobacco must meet certain 
requirements. Physical parameters include the 
moisture content, temperature, tightness, 

roasting speed, and ungluing rate of the tobacco 
[18]. Chemical composition is mainly reflected in 
nicotine, total sugar, reducing sugar, total 
nitrogen, potassium, and chlorine [19]. Tobacco 
structure, on the other hand, is reflected in the 
proportion of tobacco in the leaf. This study 
focuses on the homogenized processing quality 
of tobacco leaf after leaf beating and re-firing, so 
the main content of the study is the structure of 
the tobacco leaf after processing through the 
methods of tobacco wetting, leaf beating process 
and re-firing process. Considering that the effects 
of leaf beating and re-firing methods on the 
chemical composition of tobacco leaves are well 
established in related studies, it is proposed that 
the quality of tobacco leaf processing is based on 
leaf structure [20]. Leaf structure can be 
considered from two aspects, one part refers to 
the quality of tobacco before leaf beating and 
roasting, i.e., the quality of tobacco after de-
stemming and before roasting; the other part 
refers to the structure of tobacco after leaf 
beating and roasting. The corresponding indexes 
include large slice rate (> 25.4 mm × 25.4 mm, %), 
medium slice rate (≤ 25.4 mm × 25.4mm > 12.7 
mm × 12.7mm, %), small slice rate (≤ 12.7 mm × 
12.7 mm > 6.35 mm × 6.35 mm, %), 
fragmentation rate (≤ 6.35 mm × 6.35 mm > 2.36 
mm × 2.36 mm, %), fragmentation rate (≤ 2.36 
mm × 2.36 mm, %), large and medium flakes (> 
12.7 mm × 12.7 mm, %), and leaf peduncle rate 
(> 1.5 mm, %), and the leaf structure of tobacco 
leaves after leaf beating and re-froasting is 
shown in Figure 3. Tobacco leaf homogenization 
processing quality (leaf structure) indicators are 
organized as shown in Table 1. 
 

 
 
Figure 3. Blade structure. 
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Table 1. Quality indexes of tobacco leaf homogenization processing. 
 

Pre-baking After baking 

Indicator No. Indicator name (%) Indicator No. Indicator name (%) 

P1 Pre-bake blockbuster rate A1 Post-bake flake rate 

P2 Pre-roast center flake rate  A2 Medium flake rate after baking 

P3 Rate of small flakes before baking A3 Rate of small flakes after baking 

P4 Pre-bake fragmentation rate A4 Post-bake fragmentation rate 

P5 Pre-roast crumble rate A5 Post-roasting crumble rate 

P6 Pre-roasting large and medium slices A6 Post-roasting large-medium flake rate 

P7 Pre-roast leaf peduncle content A7 Post-roast leaf peduncle content 

 
 

Results and discussion 
 
Indicator system construction and score analysis 
According to the research of related scholars, the 
main processes of leaf beating and re-roasting 
include leaf wetting process, leaf beating and de-
stemming process and re-roasting process. These 
processes have a total of 50 influencing factors 
on the quality of tobacco leaf homogenization, 
which are mainly divided into four categories: 
moisture factor, temperature factor, pressure 
factor, and other factors. These influencing 
factors vary in different processes and are of 
great significance to the control of tobacco leaf 
homogenization quality. Among them, the 
moisture factors include first-run moisture (%), 
second-run moisture (%), and cooling zone 
moisture content (%). Temperature factors 
include first wetting temperature (℃), second 
wetting temperature (℃), drying zone 2 
temperature (℃), drying zone 3 temperature 
(℃), drying zone 4 temperature (℃), cooling zone 
temperature (℃), and return zone 2 temperature 
(℃). The pressure factors include first-run inlet 
steam pressure (mpa), first-run air pressure 
(mpa), first-run heater steam pressure (mpa), 
first-run rear nozzle steam pressure (mpa), first-
run pure steam nozzle pressure (mpa), second-
run inlet steam pressure (mpa), second-run air 
pressure (mpa), second-run pre-nozzle steam 
pressure (mpa), second-run rear nozzle steam 
pressure ( mpa), second-run pure steam nozzle 
pressure (mpa), and return zone steam pressure 
(mpa) [16]. Process factors include the first run 
cylinder speed (r/min), the first run hot air 
circulating motor frequency (Hz), the second run 

cylinder speed (r/min), the second run hot air 
circulating motor frequency (Hz), the speed of 
the first dozen of one hit rollers (r/min), the 
speed of the first dozen of two hits rollers (r/min), 
the speed of the first dozen of three hits (r/min), 
the speed of the second dozen of rollers (r/min), 
the speed of the third dozen of one hit hitting 
rollers (r/min), three dozen two-connected 
hitting rollers (r/min), four dozen rollers (r/min), 
one wind fan frequency (Hz), two wind fan 
frequency (Hz), three wind fan frequency (Hz), 
four wind fan frequency (Hz), five wind fan 
frequency (Hz), seven wind fan frequency (Hz), 
eight wind fan frequency (Hz), wind sorting fan 
frequency (Hz), mesh belt frequency (Hz), 
thickness of tobacco laying (cm), drying zone 1 
fan frequency (Hz), drying zone 2 fan frequency 
(Hz), cooling zone fan frequency (Hz), moisture 
return zone 1 M10 fan frequency (Hz), moisture 
return zone M9 fan frequency (Hz), moisture 
return M8 fan frequency (Hz), M6 fan frequency 
(Hz).  
 
Through the principal component analysis, the 
cumulative contribution to the variance of the 
first 12 indicators was obtained, which is shown 
in Table 2. According to the data in Table 2, the 
total variance occupied by the eigenvalues of the 
12 principal components reached 85.603%, so 
these 12 principal components can be extracted 
for further analysis and processing, and the 
specific values of the eigenvalues of the 12 
principal components corresponded to 13.126, 
7.371, 4.853, 3.691, 2.738, 2.222, 2.093, 1.875, 
1.497, 1.430, 1.286, and 1.186. With these data, 
we can evaluate the comprehensive score of the 
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Table 2. Cumulative contribution of variance (top 12). 
 

Ingredient 

Initial eigenvalue Extract the sum of squares and load Rotate the sum of squares to load 

Add up 
the total 

% of 
variance 

Cumulative 
% 

Add up 
the total 

% of 
variance 

Cumulative 
% 

Add up 
the total 

% of 
variance 

Cumulative 
% 

1 13.126 26.141 26.141 13.126 26.141 26.141 11.639 23.167 23.167 

2 7.371 14.630 40.771 7.371 14.630 40.771 6.356 12.601 35.768 

3 4.853 9.795 50.566 4.953 9.793 50.564 5.610 11.108 46.876 

4 3.691 7.270 57.836 3.691 7.270 57.834 3.169 6.226 53.102 

5 2.738 5.364 63.200 2.738 5.364 63.198 3.156 6.200 59.302 

6 2.222 4.333 67.533 2.222 4.333 67.531 2.337 4.564 63.866 

7 2.093 4.075 71.608 2.093 4.075 71.606 2.243 4.374 68.240 

8 1.875 3.639 75.247 1.875 3.639 75.245 2.001 3.890 72.130 

9 1.497 2.883 78.130 1.497 2.883 78.128 1.915 3.718 75.848 

10 1.430 2.750 80.880 1.430 2.750 80.878 1.793 3.474 79.322 

11 1.286 2.462 83.342 1.286 2.462 83.34 1.680 3.249 82.571 

12 1.186 2.261 85.603 1.186 2.261 85.601 1.660 3.030 85.601 

 
 
final constructed index system and further 
extract the key information through principal 
component processing. 
 
Based on the regression method, we derive the 
component score coefficient matrix according to

( )* 1
T

B A R−=  . Through in-depth analysis, the 

factor scores of the 12 principal components 
were precisely calculated according to the factor 
score function model. Then, referring to the data 
in Table 2, we constructed a model for calculating 
the comprehensive score F of the evaluation 
factors of the impact of the main processes of 
leaf beating and re-roasting on the processing 
quality of tobacco leaf homogenization. 
 

1 2 3 4 5 6 7

8 9 10 11 12

23.167 12.601 11.108 6.226 6.200 4.564 4.374

3.890 3.718 3.474 3.249 3.030 / 85.601

F F F F F F F F

F F F F F

= + + + + + +

+ + + + +

（

）
  (13) 

 
According to the above formula of the evaluation 
factor composite score model F, the composite 
score of this evaluation index can be calculated. 
Since the calculation of the comprehensive score 
of the evaluation factors may carry a negative 
number, which is not of practical significance, it 
is necessary to carry out standardization 
processing so that the processed score is 
between 0 and 1. Standardized processing can be 
done in the following way: 

min

max min

F F
Q

F F

−
=

−

                                                    (14) 

 
Evaluation modeling 
After leaf roasting, the tobacco is categorized 
into three grades: superior, medium, and 
inferior. According to this classification, we can 
classify the evaluation of the influence of the 
main process of leaf roasting on the quality of 
tobacco leaf homogenization into three levels: 
top grade tobacco (score between 0 and 0.5), 
medium grade tobacco (score between 0.5 and 
0.8) and lower grade tobacco (score between 0.8 
and 1). Secondly, we obtained the score of the 
evaluation index of the impact of the main 
processes of leaf beating and retorting on the 
processing quality of tobacco leaf 
homogenization, F. In order to standardize this 
score, we processed it to obtain Q. This 
processed score corresponds to the results of the 
three levels of impact evaluation mentioned 
above. The leaf structure of tobacco leaves after 
leaf beating and re-roasting is most significantly 
affected by the leaf wetting process, leaf beating 
and de-stemming process and re-roasting 
process, while the other processes have a 
relatively small impact on the quality of tobacco 
leaf homogenization and processing. In the three 
main processes, there were 50 main influencing 
factors, which interacted and combined with 
each other to affect the leaf after tobacco leaf 
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beating and re-roasting [21-23]. Therefore, when 
evaluating the influencing factors, it is necessary 
to consider each factor comprehensively and not 
focus on a single factor only. A BP neural network 
consists of an input layer, a hidden layer, and an 
output layer, where the hidden layer can have 
one or more intermediate layers. In existing 
research, most problems are solved using only a 
single hidden layer. Therefore, in this paper, a 
neural network with a three-layer architecture, 
i.e., each layer is an input layer, an implied layer, 
and an output layer, respectively, is used for BP 
neural network analysis. Such an architecture is 
relatively simple but can fulfill the need of 
problem solving. 
 
BP neural network structure 
(1) Input layer design 
According to the index system of main 
influencing factors, combined with the method of 
modeling, the neurons in the input layer of the BP 
neural network were constructed as 50 main 
influencing factors, namely, W1, W2, W3, W4, 
W5, W6, W7, W8, W9, W10, W11, W12, W13, 
and W14 ......H48, H49, H50. 
 
(2) Output layer design 
Based on the multi-indicator assessment 
described above, we classified the evaluation 
results of the degree of influence of the main 
processes of leaf beating and re-firing on the 
processing quality of tobacco leaf 
homogenization into three levels: top grade, 
medium grade and bottom grade. In order to 
make the output results more intuitive, we 
selected the comprehensive score Q of the 
evaluation indicators as the output results. 
 
(3) Implicit layer design 
According to the relevant literature, there are 
various empirical formulas for determining the 
number of hidden layer units of a BP neural 
network, as shown below: 
 

1 2logn n=                                                            (15) 

 

11 −= nn                                                             (16)

 

( )1 , 1 10n n m a= + +                             (17) 

 
2

1 0.43 2.54 0.77 0.35 0.51 0.12n mn m n n= + + + + +        (18) 

 

where 1n  is the number of implicit layer cells, n is 

the number of input layer cells, m is the number 
of output layer cells, and  denotes the tuning 
parameter. 
 
In the study of this paper, the number of input 
variables (input layer) in the model is 50, and the 
number of output variables (output layer) is 1, 
then the number of input layer units is n=50, and 
the number of nodes in the output layer is m=1. 
According to the above four empirical formulas 
the number of units in the implied layer can be 
calculated, and the number of nodes in the 
implied layer should be selected from the set [8-
17, 15, 19, 49], and analyzed by comparing 
several experiments. Through the comparison 
and analysis of many experiments, the number of 
nodes in the implied layer is 17 which is more 
effective. The model in this study has 50 units in 
the input layer and 1 node in the output layer, 
and the number of units in the output layer is 50. 
Based on this information, we can use four 
empirical formulas to calculate the number of 
units in the implied layer [24]. Based on these 
calculations, we need to select the number of 
nodes of the implicit layer in the set [8-17, 15, 19, 
49]. After several experiments and comparative 
analysis, we find that the model performs better 
when the number of nodes in the implied layer is 
17. In order to improve the performance of the 
trained individual network in terms of 
generalization ability and to ensure that it 
converges quickly during the training process, the 
model decided to use a hyperbolic tangent S-
shaped function as the excitation function for 
each layer [25]. Also, in order to optimize the 
training process, we used gradient descent with 
momentum for training. During the network 
training process, 50 sets of sample data should be 
randomly   sorted,   and  the  test  set  should  be 
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Table 3. Sample data used for integrated learning modeling. 
 

Serial number W1 W2 W3 W4 W5 ... H48 H49 H50 Q 

1 65 0.4 0.5 0.4 0.3 ... 45 45 8 0.044 

2 65 0.4 0.5 0.4 0.4 ... 45 45 8 0 

3 70 0.5 0.4 0.4 0.6 ... 45 44 8 0.231 

4 70 0.5 0.5 0.4 0.6 ... 46 45 9 0.563 

5 75 0.5 0.4 0.4 0.6 ... 45 45 8 0.606 

6 75 0.5 0.5 0.5 0.5 ... 45 44 8 0.685 

7 75 0.5 0.4 0.5 0.6 ... 45 45 8 0.702 

8 75 0.5 0.5 0.6 0.5 ... 45 45 6 0.712 

9 75 0.6 0.5 0.6 0.5 ... 44 46 8 0.719 

... ... ... ... ... ... ... ... ... ... ... 

50 75 0.5 0.5 0.4 0.4 ... 45 45 7 0.756 

 
 
selected with a 10% ratio, that is, 5 sets of sample 
data are selected as the test set while the 
remaining 45 sets of sample data are used as the 
training set (Table 3). An important step that we 
should perform before applying the sample data 
is normalization. Normalizing the data can 
significantly increase the speed of network 
training and avoid large output value errors due 
to excessive data fluctuations. Normalization is 
the process of converting raw sample data into 
decimal values between 0 and 1. This process is 
performed in a specific way [22]. Once the 
normalized data is used as input data, its output 
cannot be used as the desired prediction data. 
Therefore, in order to obtain the desired 
predicted values, we have to perform the inverse 
normalization process. In this paper, we will use 
MATLAB software to implement the 
normalization and denormalization process. The 
sample data is normalized using MATLAB 
software and the normalized sample data is 
stored between 0 and 1. The normalization 
process is completed using the mapminmax 
function, and the program is written as P = 
mapminmax (X, TMIN, TMAX), where X 
represents the sample data, TMIN represents the 
minimum value of each row, TMAX represents 
the maximum value, T represents the normalized 
data, and P represents the structure stored after 
normalization. In the MATLAB software 
environment, we took the following steps to 
normalize the sample data: 

(1) Normalize the sample data using the 
mapminmax function. The parameters of 
this function include the input data X, and 
the minimum value TMIN and maximum 
value TMAX for each row. 

 
(2) The mapminmax function normalizes the 

sample data to between 0 and 1. 
 
(3) The normalized data is stored in the structure 

P. 
 
By performing the above steps, we are able to 
achieve the normalization of the sample data and 
store the normalized data between 0 and 1. This 
processing method can improve the 
comparability and analyzability of the data. 
 
We used a BP neural network to construct the 
model and focused on the selection of functions 
in the design process. For the transfer function, 
we used Sigmoid function, and there are two 
commonly used Sigmoid functions: tansig 
function and logsig function. Since our input data 
is normalized and the data values are between 
[0,1], we chose the logsig function as the hidden 
layer transfer function. For the training function, 
we provide several learning algorithms in 
MATLAB: variable learning rate gradient descent 
algorithm (traingda), momentum gradient 
descent algorithm (trainm), gradient descent 
algorithm (traingd), and variable learning rate 
momentum       gradient       descent       algorithm 
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Table 4. Parameter settings for BP neural network. 
 

Typology Parameters Parameter value 

BP neural network 

Number of training samples 38 

Number of test samples 5 

Maximum number of training sessions 10000 

Number of nodes in the hidden layer 17 

tolerance (allowed error) 10-2 

 
 
(traingdx) [26]. In this paper, traingda is chosen 
as the gradient descent training function for 
adaptive lrBP. In addition, by training the 
research model several times and comparing the 
results of several simulations, we finally chose 
the clearngdm function as the learning function. 
The performance function chosen in this paper is 
mse, and we set the training objective to 0.01 and 
the number of training times to 10000 times. A 
summary of the relevant descriptions of the 
parameter settings was shown in Table 4. 
Considering that individual BP networks are more 
sensitive to the selection of baseline and 
threshold values, this paper decides to use 
genetic algorithm for the optimization of BP 
neural networks. Genetic algorithm has the 
performance of global search and can calculate 
the value of fitness function to optimize the 
weights and thresholds of BP network. The 
optimized weights and thresholds will be used as 
the initial weights and thresholds of the BP 
network, aiming to improve the accuracy and 
stability of prediction. During evolution, if an 
individual is highly adapted to its environment, 
the probability that it will pass on the 
corresponding function to the next generation 
will increase significantly. Conversely, if the 
individual is not well adapted to its environment, 
the probability that the function will be copied to 
the next generation will be significantly reduced. 
This is the result of the mechanism of natural 
selection, which tends to retain traits that help 
individuals survive and reproduce. During natural 
evolution, recombination of two pairs of 
chromosomes can produce a new chromosome. 
This recombination involves recombining certain 
genes of the chromosomes in some way to 
produce a new individual. This method is also 
consistent with the principle of evolution, which 

is to pass on the good genes from both parents 
to their offspring through continuous evolution. 
In the process of evolution, we do not want too 
many good genes to be destroyed, because these 
genes could potentially lead to the creation of a 
new, better individual. In the process of 
biological evolution, errors due to certain factors 
may occur, and these errors may further trigger 
changes in biological characteristics, resulting in 
the creation of new biological characteristics. 
Although the likelihood of this happening is 
relatively small, it still has a role to play in 
individual change and should therefore not be 
ignored. Mutation is the process by which certain 
genes on two different chromosomes are 
replaced to form a new individual, and it is the 
most important and indispensable auxiliary 
method to produce a new individual. When 
designing the mutation operator, two issues 
need to be considered: the method of replacing 
gene values and the location of the mutation 
point.In this paper, we chose to use the fitness 
subfunction fitness.m for the independent 
variable screening optimization analysis. gabp 
Eval.m and gadecod.m involved in this paper are 
the fitness and coding subfunctions used for 
weight and threshold correction and 
optimization. There is no fixed learning rate due 
to the use of genetic algorithm to optimize the BP 
neural network where the learning rate is 
variable. The population size is set to 20 and the 
population evolution frequency is set to 50 times 
to ensure that the optimal result is found. The 
values of crossover probability and mutation 
probability are determined by comparing the 
results of several experiments. The contents of 
the relevant parameter settings are shown in 
Table 5. 
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Table 5. Relevant parameter settings of genetic algorithm. 
 

Typology Parameters Parameter value 

Genetic algorithm 

Maximum number of iterations 50 

population size 20 

crossover probability 0.3 

probability of mutation 0.1 

 
 

Results and discussion 
 

After in-depth analysis, we have successfully 
determined the parameters and functions to 
initialize the network. After this, we imported 40 
sets of test data out of 50 sets of sample data into 
a predefined grid for training. After training in 
this grid, we obtained the results as shown in 
Figures 4, 5, and 6. According to Figure 4, we can 
observe a gradual decrease in the network error 
value. After 8 iterative runs, the error value 
reaches the lowest point and stabilizes. 
 
 

 
 
Figure 4. Error sum of squares curve. 

 
 
Meanwhile, Figure 5 shows that the network 
fitness value reaches the highest point and 
remains stable. In Figure 6, the network 
converges after 121 times of training, which 
indicates that the performance of our 
constructed BP network has reached the 
expected level. After the BP network reached the 
desired level, we imported sample data from the 
test set to this network model for testing. After 

10 valid experiments, we calculated the average 
relative error and organized the test results into 
Table 6. 
 
 

 
 
Figure 5. Adaptation curve. 

 
 

 
 
Figure 6. Performance curve. 

 
 
After standardization, the value of score Q 
between   0   and   0.5   corresponds   to   superior 
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Table 6. Mean relative error. 
 

Sample 
No. 

Hierarchy  Desired 
output 

Actual 
output 

Average relative error 
(%) 

Blade structural 
grade 

39 moderate 0.7930 0.7695 3.0565 moderate 

40 moderate 0.7860 0.7763 1.2584 moderate 

41 Highest quality 0.8050 0.8449 4.8575 highest quality 

42 moderate 0.7560 0.7645 1.0845 moderate 

43 moderate 0.7570 0.7449 1.4523 moderate 

 
 
smoke; between 0.5 and 0.8 corresponds to 
medium smoke; between 0.8 and 1 corresponds 
to inferior smoke. For superior cigarettes, the 
proportion of pre-roasting blade structure larger 
than 25.4 mm x 25.4 mm should be greater than 
or equal to 47%, and the proportion larger than 
12.7 mm x 12.7 mm should be greater than or 
equal to 83%. For medium cigarettes, the 
proportion of pre-roasting blade structure that is 
greater than 25.4 mm x 25.4 mm should be 
greater than or equal to 45%, and the proportion 
that is greater than 12.7 mm x 12.7 mm should 
be greater than or equal to 81%. For lower grade 
tobacco, the proportion of pre-roasting blade 
structure that is larger than 25.4 mm x 25.4 mm 
should be greater than or equal to 41%, and the 
proportion that is larger than 12.7 mm x 12.7 mm 
should be greater than or equal to 77%. In 
addition, for top grade, medium grade and lower 
grade cigarettes, the proportion of pre-roasting 
blade structure that is greater than 6.35 mm x 
6.35 mm should be greater than or equal to 94%, 
the proportion that is greater than 2.36 mm x 
2.36 mm should be greater than or equal to 
99.2%, and the proportion that is greater than 
2.36 mm x 2.36 mm should be less than 0.8%. 
After 10 valid experiments, we obtained the 
predicted results. The maximum relative error 
between the actual output and the expected 
value on the prediction of the composite 
influence factor score was 4.96%. The relative 
errors derived from the five sets of test data were 
all controlled within 5%. In addition, the quality 
grade of tobacco leaf homogenization processing 
predicted by the evaluation model is basically 
consistent with the quality grade of tobacco leaf 
homogenization processing to which the original 
sample belongs. The prediction effect has 

reached 100% correct rate, which verifies the 
effectiveness of the evaluation model. 
 
 

Conclusion 
 
In this study, through in-depth analysis of the 
impact of leaf beating and re-grilling process on 
the processing quality of tobacco leaf 
homogenization, a comprehensive evaluation 
model was successfully established, and the 
construction and optimization of the model was 
carried out by using a combination of BP neural 
network and genetic algorithm. The results of the 
study show that the key parameters such as 
temperature, humidity and time in the leaf 
beating and roasting process have a significant 
effect on the processing quality of tobacco leaf 
homogenization. After several experiments, the 
established evaluation model can effectively 
predict the processing quality of tobacco leaf 
blade homogenization and control the prediction 
error within 5%, showing good accuracy and 
stability. This result not only provides a new 
analytical tool for the field of tobacco processing, 
but also provides a scientific basis for optimizing 
the parameters of the leaf beating and roasting 
process, which can help to improve the quality of 
tobacco processing and thus promote the 
sustainable development of the tobacco 
industry. 
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